(function (global, factory) { typeof exports === 'object' && typeof module !== 'undefined' ? module.exports = factory() : typeof define === 'function' && define.amd ? define(factory) : (global = typeof globalThis !== 'undefined' ? globalThis : global || self, global.Delaunator = factory()); })(this, (function () { 'use strict'; const epsilon = 1.1102230246251565e-16; const splitter = 134217729; const resulterrbound = (3 + 8 * epsilon) * epsilon; // fast_expansion_sum_zeroelim routine from oritinal code function sum(elen, e, flen, f, h) { let Q, Qnew, hh, bvirt; let enow = e[0]; let fnow = f[0]; let eindex = 0; let findex = 0; if ((fnow > enow) === (fnow > -enow)) { Q = enow; enow = e[++eindex]; } else { Q = fnow; fnow = f[++findex]; } let hindex = 0; if (eindex < elen && findex < flen) { if ((fnow > enow) === (fnow > -enow)) { Qnew = enow + Q; hh = Q - (Qnew - enow); enow = e[++eindex]; } else { Qnew = fnow + Q; hh = Q - (Qnew - fnow); fnow = f[++findex]; } Q = Qnew; if (hh !== 0) { h[hindex++] = hh; } while (eindex < elen && findex < flen) { if ((fnow > enow) === (fnow > -enow)) { Qnew = Q + enow; bvirt = Qnew - Q; hh = Q - (Qnew - bvirt) + (enow - bvirt); enow = e[++eindex]; } else { Qnew = Q + fnow; bvirt = Qnew - Q; hh = Q - (Qnew - bvirt) + (fnow - bvirt); fnow = f[++findex]; } Q = Qnew; if (hh !== 0) { h[hindex++] = hh; } } } while (eindex < elen) { Qnew = Q + enow; bvirt = Qnew - Q; hh = Q - (Qnew - bvirt) + (enow - bvirt); enow = e[++eindex]; Q = Qnew; if (hh !== 0) { h[hindex++] = hh; } } while (findex < flen) { Qnew = Q + fnow; bvirt = Qnew - Q; hh = Q - (Qnew - bvirt) + (fnow - bvirt); fnow = f[++findex]; Q = Qnew; if (hh !== 0) { h[hindex++] = hh; } } if (Q !== 0 || hindex === 0) { h[hindex++] = Q; } return hindex; } function estimate(elen, e) { let Q = e[0]; for (let i = 1; i < elen; i++) Q += e[i]; return Q; } function vec(n) { return new Float64Array(n); } const ccwerrboundA = (3 + 16 * epsilon) * epsilon; const ccwerrboundB = (2 + 12 * epsilon) * epsilon; const ccwerrboundC = (9 + 64 * epsilon) * epsilon * epsilon; const B = vec(4); const C1 = vec(8); const C2 = vec(12); const D = vec(16); const u = vec(4); function orient2dadapt(ax, ay, bx, by, cx, cy, detsum) { let acxtail, acytail, bcxtail, bcytail; let bvirt, c, ahi, alo, bhi, blo, _i, _j, _0, s1, s0, t1, t0, u3; const acx = ax - cx; const bcx = bx - cx; const acy = ay - cy; const bcy = by - cy; s1 = acx * bcy; c = splitter * acx; ahi = c - (c - acx); alo = acx - ahi; c = splitter * bcy; bhi = c - (c - bcy); blo = bcy - bhi; s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); t1 = acy * bcx; c = splitter * acy; ahi = c - (c - acy); alo = acy - ahi; c = splitter * bcx; bhi = c - (c - bcx); blo = bcx - bhi; t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); _i = s0 - t0; bvirt = s0 - _i; B[0] = s0 - (_i + bvirt) + (bvirt - t0); _j = s1 + _i; bvirt = _j - s1; _0 = s1 - (_j - bvirt) + (_i - bvirt); _i = _0 - t1; bvirt = _0 - _i; B[1] = _0 - (_i + bvirt) + (bvirt - t1); u3 = _j + _i; bvirt = u3 - _j; B[2] = _j - (u3 - bvirt) + (_i - bvirt); B[3] = u3; let det = estimate(4, B); let errbound = ccwerrboundB * detsum; if (det >= errbound || -det >= errbound) { return det; } bvirt = ax - acx; acxtail = ax - (acx + bvirt) + (bvirt - cx); bvirt = bx - bcx; bcxtail = bx - (bcx + bvirt) + (bvirt - cx); bvirt = ay - acy; acytail = ay - (acy + bvirt) + (bvirt - cy); bvirt = by - bcy; bcytail = by - (bcy + bvirt) + (bvirt - cy); if (acxtail === 0 && acytail === 0 && bcxtail === 0 && bcytail === 0) { return det; } errbound = ccwerrboundC * detsum + resulterrbound * Math.abs(det); det += (acx * bcytail + bcy * acxtail) - (acy * bcxtail + bcx * acytail); if (det >= errbound || -det >= errbound) return det; s1 = acxtail * bcy; c = splitter * acxtail; ahi = c - (c - acxtail); alo = acxtail - ahi; c = splitter * bcy; bhi = c - (c - bcy); blo = bcy - bhi; s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); t1 = acytail * bcx; c = splitter * acytail; ahi = c - (c - acytail); alo = acytail - ahi; c = splitter * bcx; bhi = c - (c - bcx); blo = bcx - bhi; t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); _i = s0 - t0; bvirt = s0 - _i; u[0] = s0 - (_i + bvirt) + (bvirt - t0); _j = s1 + _i; bvirt = _j - s1; _0 = s1 - (_j - bvirt) + (_i - bvirt); _i = _0 - t1; bvirt = _0 - _i; u[1] = _0 - (_i + bvirt) + (bvirt - t1); u3 = _j + _i; bvirt = u3 - _j; u[2] = _j - (u3 - bvirt) + (_i - bvirt); u[3] = u3; const C1len = sum(4, B, 4, u, C1); s1 = acx * bcytail; c = splitter * acx; ahi = c - (c - acx); alo = acx - ahi; c = splitter * bcytail; bhi = c - (c - bcytail); blo = bcytail - bhi; s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); t1 = acy * bcxtail; c = splitter * acy; ahi = c - (c - acy); alo = acy - ahi; c = splitter * bcxtail; bhi = c - (c - bcxtail); blo = bcxtail - bhi; t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); _i = s0 - t0; bvirt = s0 - _i; u[0] = s0 - (_i + bvirt) + (bvirt - t0); _j = s1 + _i; bvirt = _j - s1; _0 = s1 - (_j - bvirt) + (_i - bvirt); _i = _0 - t1; bvirt = _0 - _i; u[1] = _0 - (_i + bvirt) + (bvirt - t1); u3 = _j + _i; bvirt = u3 - _j; u[2] = _j - (u3 - bvirt) + (_i - bvirt); u[3] = u3; const C2len = sum(C1len, C1, 4, u, C2); s1 = acxtail * bcytail; c = splitter * acxtail; ahi = c - (c - acxtail); alo = acxtail - ahi; c = splitter * bcytail; bhi = c - (c - bcytail); blo = bcytail - bhi; s0 = alo * blo - (s1 - ahi * bhi - alo * bhi - ahi * blo); t1 = acytail * bcxtail; c = splitter * acytail; ahi = c - (c - acytail); alo = acytail - ahi; c = splitter * bcxtail; bhi = c - (c - bcxtail); blo = bcxtail - bhi; t0 = alo * blo - (t1 - ahi * bhi - alo * bhi - ahi * blo); _i = s0 - t0; bvirt = s0 - _i; u[0] = s0 - (_i + bvirt) + (bvirt - t0); _j = s1 + _i; bvirt = _j - s1; _0 = s1 - (_j - bvirt) + (_i - bvirt); _i = _0 - t1; bvirt = _0 - _i; u[1] = _0 - (_i + bvirt) + (bvirt - t1); u3 = _j + _i; bvirt = u3 - _j; u[2] = _j - (u3 - bvirt) + (_i - bvirt); u[3] = u3; const Dlen = sum(C2len, C2, 4, u, D); return D[Dlen - 1]; } function orient2d(ax, ay, bx, by, cx, cy) { const detleft = (ay - cy) * (bx - cx); const detright = (ax - cx) * (by - cy); const det = detleft - detright; const detsum = Math.abs(detleft + detright); if (Math.abs(det) >= ccwerrboundA * detsum) return det; return -orient2dadapt(ax, ay, bx, by, cx, cy, detsum); } const EPSILON = Math.pow(2, -52); const EDGE_STACK = new Uint32Array(512); class Delaunator { static from(points, getX = defaultGetX, getY = defaultGetY) { const n = points.length; const coords = new Float64Array(n * 2); for (let i = 0; i < n; i++) { const p = points[i]; coords[2 * i] = getX(p); coords[2 * i + 1] = getY(p); } return new Delaunator(coords); } constructor(coords) { const n = coords.length >> 1; if (n > 0 && typeof coords[0] !== 'number') throw new Error('Expected coords to contain numbers.'); this.coords = coords; // arrays that will store the triangulation graph const maxTriangles = Math.max(2 * n - 5, 0); this._triangles = new Uint32Array(maxTriangles * 3); this._halfedges = new Int32Array(maxTriangles * 3); // temporary arrays for tracking the edges of the advancing convex hull this._hashSize = Math.ceil(Math.sqrt(n)); this._hullPrev = new Uint32Array(n); // edge to prev edge this._hullNext = new Uint32Array(n); // edge to next edge this._hullTri = new Uint32Array(n); // edge to adjacent triangle this._hullHash = new Int32Array(this._hashSize); // angular edge hash // temporary arrays for sorting points this._ids = new Uint32Array(n); this._dists = new Float64Array(n); this.update(); } update() { const {coords, _hullPrev: hullPrev, _hullNext: hullNext, _hullTri: hullTri, _hullHash: hullHash} = this; const n = coords.length >> 1; // populate an array of point indices; calculate input data bbox let minX = Infinity; let minY = Infinity; let maxX = -Infinity; let maxY = -Infinity; for (let i = 0; i < n; i++) { const x = coords[2 * i]; const y = coords[2 * i + 1]; if (x < minX) minX = x; if (y < minY) minY = y; if (x > maxX) maxX = x; if (y > maxY) maxY = y; this._ids[i] = i; } const cx = (minX + maxX) / 2; const cy = (minY + maxY) / 2; let i0, i1, i2; // pick a seed point close to the center for (let i = 0, minDist = Infinity; i < n; i++) { const d = dist(cx, cy, coords[2 * i], coords[2 * i + 1]); if (d < minDist) { i0 = i; minDist = d; } } const i0x = coords[2 * i0]; const i0y = coords[2 * i0 + 1]; // find the point closest to the seed for (let i = 0, minDist = Infinity; i < n; i++) { if (i === i0) continue; const d = dist(i0x, i0y, coords[2 * i], coords[2 * i + 1]); if (d < minDist && d > 0) { i1 = i; minDist = d; } } let i1x = coords[2 * i1]; let i1y = coords[2 * i1 + 1]; let minRadius = Infinity; // find the third point which forms the smallest circumcircle with the first two for (let i = 0; i < n; i++) { if (i === i0 || i === i1) continue; const r = circumradius(i0x, i0y, i1x, i1y, coords[2 * i], coords[2 * i + 1]); if (r < minRadius) { i2 = i; minRadius = r; } } let i2x = coords[2 * i2]; let i2y = coords[2 * i2 + 1]; if (minRadius === Infinity) { // order collinear points by dx (or dy if all x are identical) // and return the list as a hull for (let i = 0; i < n; i++) { this._dists[i] = (coords[2 * i] - coords[0]) || (coords[2 * i + 1] - coords[1]); } quicksort(this._ids, this._dists, 0, n - 1); const hull = new Uint32Array(n); let j = 0; for (let i = 0, d0 = -Infinity; i < n; i++) { const id = this._ids[i]; const d = this._dists[id]; if (d > d0) { hull[j++] = id; d0 = d; } } this.hull = hull.subarray(0, j); this.triangles = new Uint32Array(0); this.halfedges = new Uint32Array(0); return; } // swap the order of the seed points for counter-clockwise orientation if (orient2d(i0x, i0y, i1x, i1y, i2x, i2y) < 0) { const i = i1; const x = i1x; const y = i1y; i1 = i2; i1x = i2x; i1y = i2y; i2 = i; i2x = x; i2y = y; } const center = circumcenter(i0x, i0y, i1x, i1y, i2x, i2y); this._cx = center.x; this._cy = center.y; for (let i = 0; i < n; i++) { this._dists[i] = dist(coords[2 * i], coords[2 * i + 1], center.x, center.y); } // sort the points by distance from the seed triangle circumcenter quicksort(this._ids, this._dists, 0, n - 1); // set up the seed triangle as the starting hull this._hullStart = i0; let hullSize = 3; hullNext[i0] = hullPrev[i2] = i1; hullNext[i1] = hullPrev[i0] = i2; hullNext[i2] = hullPrev[i1] = i0; hullTri[i0] = 0; hullTri[i1] = 1; hullTri[i2] = 2; hullHash.fill(-1); hullHash[this._hashKey(i0x, i0y)] = i0; hullHash[this._hashKey(i1x, i1y)] = i1; hullHash[this._hashKey(i2x, i2y)] = i2; this.trianglesLen = 0; this._addTriangle(i0, i1, i2, -1, -1, -1); for (let k = 0, xp, yp; k < this._ids.length; k++) { const i = this._ids[k]; const x = coords[2 * i]; const y = coords[2 * i + 1]; // skip near-duplicate points if (k > 0 && Math.abs(x - xp) <= EPSILON && Math.abs(y - yp) <= EPSILON) continue; xp = x; yp = y; // skip seed triangle points if (i === i0 || i === i1 || i === i2) continue; // find a visible edge on the convex hull using edge hash let start = 0; for (let j = 0, key = this._hashKey(x, y); j < this._hashSize; j++) { start = hullHash[(key + j) % this._hashSize]; if (start !== -1 && start !== hullNext[start]) break; } start = hullPrev[start]; let e = start, q; while (q = hullNext[e], orient2d(x, y, coords[2 * e], coords[2 * e + 1], coords[2 * q], coords[2 * q + 1]) >= 0) { e = q; if (e === start) { e = -1; break; } } if (e === -1) continue; // likely a near-duplicate point; skip it // add the first triangle from the point let t = this._addTriangle(e, i, hullNext[e], -1, -1, hullTri[e]); // recursively flip triangles from the point until they satisfy the Delaunay condition hullTri[i] = this._legalize(t + 2); hullTri[e] = t; // keep track of boundary triangles on the hull hullSize++; // walk forward through the hull, adding more triangles and flipping recursively let n = hullNext[e]; while (q = hullNext[n], orient2d(x, y, coords[2 * n], coords[2 * n + 1], coords[2 * q], coords[2 * q + 1]) < 0) { t = this._addTriangle(n, i, q, hullTri[i], -1, hullTri[n]); hullTri[i] = this._legalize(t + 2); hullNext[n] = n; // mark as removed hullSize--; n = q; } // walk backward from the other side, adding more triangles and flipping if (e === start) { while (q = hullPrev[e], orient2d(x, y, coords[2 * q], coords[2 * q + 1], coords[2 * e], coords[2 * e + 1]) < 0) { t = this._addTriangle(q, i, e, -1, hullTri[e], hullTri[q]); this._legalize(t + 2); hullTri[q] = t; hullNext[e] = e; // mark as removed hullSize--; e = q; } } // update the hull indices this._hullStart = hullPrev[i] = e; hullNext[e] = hullPrev[n] = i; hullNext[i] = n; // save the two new edges in the hash table hullHash[this._hashKey(x, y)] = i; hullHash[this._hashKey(coords[2 * e], coords[2 * e + 1])] = e; } this.hull = new Uint32Array(hullSize); for (let i = 0, e = this._hullStart; i < hullSize; i++) { this.hull[i] = e; e = hullNext[e]; } // trim typed triangle mesh arrays this.triangles = this._triangles.subarray(0, this.trianglesLen); this.halfedges = this._halfedges.subarray(0, this.trianglesLen); } _hashKey(x, y) { return Math.floor(pseudoAngle(x - this._cx, y - this._cy) * this._hashSize) % this._hashSize; } _legalize(a) { const {_triangles: triangles, _halfedges: halfedges, coords} = this; let i = 0; let ar = 0; // recursion eliminated with a fixed-size stack while (true) { const b = halfedges[a]; /* if the pair of triangles doesn't satisfy the Delaunay condition * (p1 is inside the circumcircle of [p0, pl, pr]), flip them, * then do the same check/flip recursively for the new pair of triangles * * pl pl * /||\ / \ * al/ || \bl al/ \a * / || \ / \ * / a||b \ flip /___ar___\ * p0\ || /p1 => p0\---bl---/p1 * \ || / \ / * ar\ || /br b\ /br * \||/ \ / * pr pr */ const a0 = a - a % 3; ar = a0 + (a + 2) % 3; if (b === -1) { // convex hull edge if (i === 0) break; a = EDGE_STACK[--i]; continue; } const b0 = b - b % 3; const al = a0 + (a + 1) % 3; const bl = b0 + (b + 2) % 3; const p0 = triangles[ar]; const pr = triangles[a]; const pl = triangles[al]; const p1 = triangles[bl]; const illegal = inCircle( coords[2 * p0], coords[2 * p0 + 1], coords[2 * pr], coords[2 * pr + 1], coords[2 * pl], coords[2 * pl + 1], coords[2 * p1], coords[2 * p1 + 1]); if (illegal) { triangles[a] = p1; triangles[b] = p0; const hbl = halfedges[bl]; // edge swapped on the other side of the hull (rare); fix the halfedge reference if (hbl === -1) { let e = this._hullStart; do { if (this._hullTri[e] === bl) { this._hullTri[e] = a; break; } e = this._hullPrev[e]; } while (e !== this._hullStart); } this._link(a, hbl); this._link(b, halfedges[ar]); this._link(ar, bl); const br = b0 + (b + 1) % 3; // don't worry about hitting the cap: it can only happen on extremely degenerate input if (i < EDGE_STACK.length) { EDGE_STACK[i++] = br; } } else { if (i === 0) break; a = EDGE_STACK[--i]; } } return ar; } _link(a, b) { this._halfedges[a] = b; if (b !== -1) this._halfedges[b] = a; } // add a new triangle given vertex indices and adjacent half-edge ids _addTriangle(i0, i1, i2, a, b, c) { const t = this.trianglesLen; this._triangles[t] = i0; this._triangles[t + 1] = i1; this._triangles[t + 2] = i2; this._link(t, a); this._link(t + 1, b); this._link(t + 2, c); this.trianglesLen += 3; return t; } } // monotonically increases with real angle, but doesn't need expensive trigonometry function pseudoAngle(dx, dy) { const p = dx / (Math.abs(dx) + Math.abs(dy)); return (dy > 0 ? 3 - p : 1 + p) / 4; // [0..1] } function dist(ax, ay, bx, by) { const dx = ax - bx; const dy = ay - by; return dx * dx + dy * dy; } function inCircle(ax, ay, bx, by, cx, cy, px, py) { const dx = ax - px; const dy = ay - py; const ex = bx - px; const ey = by - py; const fx = cx - px; const fy = cy - py; const ap = dx * dx + dy * dy; const bp = ex * ex + ey * ey; const cp = fx * fx + fy * fy; return dx * (ey * cp - bp * fy) - dy * (ex * cp - bp * fx) + ap * (ex * fy - ey * fx) < 0; } function circumradius(ax, ay, bx, by, cx, cy) { const dx = bx - ax; const dy = by - ay; const ex = cx - ax; const ey = cy - ay; const bl = dx * dx + dy * dy; const cl = ex * ex + ey * ey; const d = 0.5 / (dx * ey - dy * ex); const x = (ey * bl - dy * cl) * d; const y = (dx * cl - ex * bl) * d; return x * x + y * y; } function circumcenter(ax, ay, bx, by, cx, cy) { const dx = bx - ax; const dy = by - ay; const ex = cx - ax; const ey = cy - ay; const bl = dx * dx + dy * dy; const cl = ex * ex + ey * ey; const d = 0.5 / (dx * ey - dy * ex); const x = ax + (ey * bl - dy * cl) * d; const y = ay + (dx * cl - ex * bl) * d; return {x, y}; } function quicksort(ids, dists, left, right) { if (right - left <= 20) { for (let i = left + 1; i <= right; i++) { const temp = ids[i]; const tempDist = dists[temp]; let j = i - 1; while (j >= left && dists[ids[j]] > tempDist) ids[j + 1] = ids[j--]; ids[j + 1] = temp; } } else { const median = (left + right) >> 1; let i = left + 1; let j = right; swap(ids, median, i); if (dists[ids[left]] > dists[ids[right]]) swap(ids, left, right); if (dists[ids[i]] > dists[ids[right]]) swap(ids, i, right); if (dists[ids[left]] > dists[ids[i]]) swap(ids, left, i); const temp = ids[i]; const tempDist = dists[temp]; while (true) { do i++; while (dists[ids[i]] < tempDist); do j--; while (dists[ids[j]] > tempDist); if (j < i) break; swap(ids, i, j); } ids[left + 1] = ids[j]; ids[j] = temp; if (right - i + 1 >= j - left) { quicksort(ids, dists, i, right); quicksort(ids, dists, left, j - 1); } else { quicksort(ids, dists, left, j - 1); quicksort(ids, dists, i, right); } } } function swap(arr, i, j) { const tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } function defaultGetX(p) { return p[0]; } function defaultGetY(p) { return p[1]; } return Delaunator; }));