import {Adder} from "d3-array"; import {cartesian, cartesianCross, cartesianNormalizeInPlace} from "./cartesian.js"; import {abs, asin, atan2, cos, epsilon, epsilon2, halfPi, pi, quarterPi, sign, sin, tau} from "./math.js"; function longitude(point) { return abs(point[0]) <= pi ? point[0] : sign(point[0]) * ((abs(point[0]) + pi) % tau - pi); } export default function(polygon, point) { var lambda = longitude(point), phi = point[1], sinPhi = sin(phi), normal = [sin(lambda), -cos(lambda), 0], angle = 0, winding = 0; var sum = new Adder(); if (sinPhi === 1) phi = halfPi + epsilon; else if (sinPhi === -1) phi = -halfPi - epsilon; for (var i = 0, n = polygon.length; i < n; ++i) { if (!(m = (ring = polygon[i]).length)) continue; var ring, m, point0 = ring[m - 1], lambda0 = longitude(point0), phi0 = point0[1] / 2 + quarterPi, sinPhi0 = sin(phi0), cosPhi0 = cos(phi0); for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) { var point1 = ring[j], lambda1 = longitude(point1), phi1 = point1[1] / 2 + quarterPi, sinPhi1 = sin(phi1), cosPhi1 = cos(phi1), delta = lambda1 - lambda0, sign = delta >= 0 ? 1 : -1, absDelta = sign * delta, antimeridian = absDelta > pi, k = sinPhi0 * sinPhi1; sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta))); angle += antimeridian ? delta + sign * tau : delta; // Are the longitudes either side of the point’s meridian (lambda), // and are the latitudes smaller than the parallel (phi)? if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) { var arc = cartesianCross(cartesian(point0), cartesian(point1)); cartesianNormalizeInPlace(arc); var intersection = cartesianCross(normal, arc); cartesianNormalizeInPlace(intersection); var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]); if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) { winding += antimeridian ^ delta >= 0 ? 1 : -1; } } } } // First, determine whether the South pole is inside or outside: // // It is inside if: // * the polygon winds around it in a clockwise direction. // * the polygon does not (cumulatively) wind around it, but has a negative // (counter-clockwise) area. // // Second, count the (signed) number of times a segment crosses a lambda // from the point to the South pole. If it is zero, then the point is the // same side as the South pole. return (angle < -epsilon || angle < epsilon && sum < -epsilon2) ^ (winding & 1); }