3168 lines
88 KiB
JavaScript
3168 lines
88 KiB
JavaScript
// https://d3js.org/d3-geo/ v3.1.1 Copyright 2010-2024 Mike Bostock, 2008-2012 Charles Karney
|
||
(function (global, factory) {
|
||
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-array')) :
|
||
typeof define === 'function' && define.amd ? define(['exports', 'd3-array'], factory) :
|
||
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}, global.d3));
|
||
})(this, (function (exports, d3Array) { 'use strict';
|
||
|
||
var epsilon = 1e-6;
|
||
var epsilon2 = 1e-12;
|
||
var pi = Math.PI;
|
||
var halfPi = pi / 2;
|
||
var quarterPi = pi / 4;
|
||
var tau = pi * 2;
|
||
|
||
var degrees = 180 / pi;
|
||
var radians = pi / 180;
|
||
|
||
var abs = Math.abs;
|
||
var atan = Math.atan;
|
||
var atan2 = Math.atan2;
|
||
var cos = Math.cos;
|
||
var ceil = Math.ceil;
|
||
var exp = Math.exp;
|
||
var hypot = Math.hypot;
|
||
var log = Math.log;
|
||
var pow = Math.pow;
|
||
var sin = Math.sin;
|
||
var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
|
||
var sqrt = Math.sqrt;
|
||
var tan = Math.tan;
|
||
|
||
function acos(x) {
|
||
return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
|
||
}
|
||
|
||
function asin(x) {
|
||
return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);
|
||
}
|
||
|
||
function haversin(x) {
|
||
return (x = sin(x / 2)) * x;
|
||
}
|
||
|
||
function noop() {}
|
||
|
||
function streamGeometry(geometry, stream) {
|
||
if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) {
|
||
streamGeometryType[geometry.type](geometry, stream);
|
||
}
|
||
}
|
||
|
||
var streamObjectType = {
|
||
Feature: function(object, stream) {
|
||
streamGeometry(object.geometry, stream);
|
||
},
|
||
FeatureCollection: function(object, stream) {
|
||
var features = object.features, i = -1, n = features.length;
|
||
while (++i < n) streamGeometry(features[i].geometry, stream);
|
||
}
|
||
};
|
||
|
||
var streamGeometryType = {
|
||
Sphere: function(object, stream) {
|
||
stream.sphere();
|
||
},
|
||
Point: function(object, stream) {
|
||
object = object.coordinates;
|
||
stream.point(object[0], object[1], object[2]);
|
||
},
|
||
MultiPoint: function(object, stream) {
|
||
var coordinates = object.coordinates, i = -1, n = coordinates.length;
|
||
while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]);
|
||
},
|
||
LineString: function(object, stream) {
|
||
streamLine(object.coordinates, stream, 0);
|
||
},
|
||
MultiLineString: function(object, stream) {
|
||
var coordinates = object.coordinates, i = -1, n = coordinates.length;
|
||
while (++i < n) streamLine(coordinates[i], stream, 0);
|
||
},
|
||
Polygon: function(object, stream) {
|
||
streamPolygon(object.coordinates, stream);
|
||
},
|
||
MultiPolygon: function(object, stream) {
|
||
var coordinates = object.coordinates, i = -1, n = coordinates.length;
|
||
while (++i < n) streamPolygon(coordinates[i], stream);
|
||
},
|
||
GeometryCollection: function(object, stream) {
|
||
var geometries = object.geometries, i = -1, n = geometries.length;
|
||
while (++i < n) streamGeometry(geometries[i], stream);
|
||
}
|
||
};
|
||
|
||
function streamLine(coordinates, stream, closed) {
|
||
var i = -1, n = coordinates.length - closed, coordinate;
|
||
stream.lineStart();
|
||
while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]);
|
||
stream.lineEnd();
|
||
}
|
||
|
||
function streamPolygon(coordinates, stream) {
|
||
var i = -1, n = coordinates.length;
|
||
stream.polygonStart();
|
||
while (++i < n) streamLine(coordinates[i], stream, 1);
|
||
stream.polygonEnd();
|
||
}
|
||
|
||
function geoStream(object, stream) {
|
||
if (object && streamObjectType.hasOwnProperty(object.type)) {
|
||
streamObjectType[object.type](object, stream);
|
||
} else {
|
||
streamGeometry(object, stream);
|
||
}
|
||
}
|
||
|
||
var areaRingSum$1 = new d3Array.Adder();
|
||
|
||
// hello?
|
||
|
||
var areaSum$1 = new d3Array.Adder(),
|
||
lambda00$2,
|
||
phi00$2,
|
||
lambda0$2,
|
||
cosPhi0$1,
|
||
sinPhi0$1;
|
||
|
||
var areaStream$1 = {
|
||
point: noop,
|
||
lineStart: noop,
|
||
lineEnd: noop,
|
||
polygonStart: function() {
|
||
areaRingSum$1 = new d3Array.Adder();
|
||
areaStream$1.lineStart = areaRingStart$1;
|
||
areaStream$1.lineEnd = areaRingEnd$1;
|
||
},
|
||
polygonEnd: function() {
|
||
var areaRing = +areaRingSum$1;
|
||
areaSum$1.add(areaRing < 0 ? tau + areaRing : areaRing);
|
||
this.lineStart = this.lineEnd = this.point = noop;
|
||
},
|
||
sphere: function() {
|
||
areaSum$1.add(tau);
|
||
}
|
||
};
|
||
|
||
function areaRingStart$1() {
|
||
areaStream$1.point = areaPointFirst$1;
|
||
}
|
||
|
||
function areaRingEnd$1() {
|
||
areaPoint$1(lambda00$2, phi00$2);
|
||
}
|
||
|
||
function areaPointFirst$1(lambda, phi) {
|
||
areaStream$1.point = areaPoint$1;
|
||
lambda00$2 = lambda, phi00$2 = phi;
|
||
lambda *= radians, phi *= radians;
|
||
lambda0$2 = lambda, cosPhi0$1 = cos(phi = phi / 2 + quarterPi), sinPhi0$1 = sin(phi);
|
||
}
|
||
|
||
function areaPoint$1(lambda, phi) {
|
||
lambda *= radians, phi *= radians;
|
||
phi = phi / 2 + quarterPi; // half the angular distance from south pole
|
||
|
||
// Spherical excess E for a spherical triangle with vertices: south pole,
|
||
// previous point, current point. Uses a formula derived from Cagnoli’s
|
||
// theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).
|
||
var dLambda = lambda - lambda0$2,
|
||
sdLambda = dLambda >= 0 ? 1 : -1,
|
||
adLambda = sdLambda * dLambda,
|
||
cosPhi = cos(phi),
|
||
sinPhi = sin(phi),
|
||
k = sinPhi0$1 * sinPhi,
|
||
u = cosPhi0$1 * cosPhi + k * cos(adLambda),
|
||
v = k * sdLambda * sin(adLambda);
|
||
areaRingSum$1.add(atan2(v, u));
|
||
|
||
// Advance the previous points.
|
||
lambda0$2 = lambda, cosPhi0$1 = cosPhi, sinPhi0$1 = sinPhi;
|
||
}
|
||
|
||
function area(object) {
|
||
areaSum$1 = new d3Array.Adder();
|
||
geoStream(object, areaStream$1);
|
||
return areaSum$1 * 2;
|
||
}
|
||
|
||
function spherical(cartesian) {
|
||
return [atan2(cartesian[1], cartesian[0]), asin(cartesian[2])];
|
||
}
|
||
|
||
function cartesian(spherical) {
|
||
var lambda = spherical[0], phi = spherical[1], cosPhi = cos(phi);
|
||
return [cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)];
|
||
}
|
||
|
||
function cartesianDot(a, b) {
|
||
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
||
}
|
||
|
||
function cartesianCross(a, b) {
|
||
return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]];
|
||
}
|
||
|
||
// TODO return a
|
||
function cartesianAddInPlace(a, b) {
|
||
a[0] += b[0], a[1] += b[1], a[2] += b[2];
|
||
}
|
||
|
||
function cartesianScale(vector, k) {
|
||
return [vector[0] * k, vector[1] * k, vector[2] * k];
|
||
}
|
||
|
||
// TODO return d
|
||
function cartesianNormalizeInPlace(d) {
|
||
var l = sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);
|
||
d[0] /= l, d[1] /= l, d[2] /= l;
|
||
}
|
||
|
||
var lambda0$1, phi0, lambda1, phi1, // bounds
|
||
lambda2, // previous lambda-coordinate
|
||
lambda00$1, phi00$1, // first point
|
||
p0, // previous 3D point
|
||
deltaSum,
|
||
ranges,
|
||
range;
|
||
|
||
var boundsStream$1 = {
|
||
point: boundsPoint$1,
|
||
lineStart: boundsLineStart,
|
||
lineEnd: boundsLineEnd,
|
||
polygonStart: function() {
|
||
boundsStream$1.point = boundsRingPoint;
|
||
boundsStream$1.lineStart = boundsRingStart;
|
||
boundsStream$1.lineEnd = boundsRingEnd;
|
||
deltaSum = new d3Array.Adder();
|
||
areaStream$1.polygonStart();
|
||
},
|
||
polygonEnd: function() {
|
||
areaStream$1.polygonEnd();
|
||
boundsStream$1.point = boundsPoint$1;
|
||
boundsStream$1.lineStart = boundsLineStart;
|
||
boundsStream$1.lineEnd = boundsLineEnd;
|
||
if (areaRingSum$1 < 0) lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90);
|
||
else if (deltaSum > epsilon) phi1 = 90;
|
||
else if (deltaSum < -epsilon) phi0 = -90;
|
||
range[0] = lambda0$1, range[1] = lambda1;
|
||
},
|
||
sphere: function() {
|
||
lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90);
|
||
}
|
||
};
|
||
|
||
function boundsPoint$1(lambda, phi) {
|
||
ranges.push(range = [lambda0$1 = lambda, lambda1 = lambda]);
|
||
if (phi < phi0) phi0 = phi;
|
||
if (phi > phi1) phi1 = phi;
|
||
}
|
||
|
||
function linePoint(lambda, phi) {
|
||
var p = cartesian([lambda * radians, phi * radians]);
|
||
if (p0) {
|
||
var normal = cartesianCross(p0, p),
|
||
equatorial = [normal[1], -normal[0], 0],
|
||
inflection = cartesianCross(equatorial, normal);
|
||
cartesianNormalizeInPlace(inflection);
|
||
inflection = spherical(inflection);
|
||
var delta = lambda - lambda2,
|
||
sign = delta > 0 ? 1 : -1,
|
||
lambdai = inflection[0] * degrees * sign,
|
||
phii,
|
||
antimeridian = abs(delta) > 180;
|
||
if (antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
|
||
phii = inflection[1] * degrees;
|
||
if (phii > phi1) phi1 = phii;
|
||
} else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
|
||
phii = -inflection[1] * degrees;
|
||
if (phii < phi0) phi0 = phii;
|
||
} else {
|
||
if (phi < phi0) phi0 = phi;
|
||
if (phi > phi1) phi1 = phi;
|
||
}
|
||
if (antimeridian) {
|
||
if (lambda < lambda2) {
|
||
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
|
||
} else {
|
||
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
|
||
}
|
||
} else {
|
||
if (lambda1 >= lambda0$1) {
|
||
if (lambda < lambda0$1) lambda0$1 = lambda;
|
||
if (lambda > lambda1) lambda1 = lambda;
|
||
} else {
|
||
if (lambda > lambda2) {
|
||
if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
|
||
} else {
|
||
if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
ranges.push(range = [lambda0$1 = lambda, lambda1 = lambda]);
|
||
}
|
||
if (phi < phi0) phi0 = phi;
|
||
if (phi > phi1) phi1 = phi;
|
||
p0 = p, lambda2 = lambda;
|
||
}
|
||
|
||
function boundsLineStart() {
|
||
boundsStream$1.point = linePoint;
|
||
}
|
||
|
||
function boundsLineEnd() {
|
||
range[0] = lambda0$1, range[1] = lambda1;
|
||
boundsStream$1.point = boundsPoint$1;
|
||
p0 = null;
|
||
}
|
||
|
||
function boundsRingPoint(lambda, phi) {
|
||
if (p0) {
|
||
var delta = lambda - lambda2;
|
||
deltaSum.add(abs(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta);
|
||
} else {
|
||
lambda00$1 = lambda, phi00$1 = phi;
|
||
}
|
||
areaStream$1.point(lambda, phi);
|
||
linePoint(lambda, phi);
|
||
}
|
||
|
||
function boundsRingStart() {
|
||
areaStream$1.lineStart();
|
||
}
|
||
|
||
function boundsRingEnd() {
|
||
boundsRingPoint(lambda00$1, phi00$1);
|
||
areaStream$1.lineEnd();
|
||
if (abs(deltaSum) > epsilon) lambda0$1 = -(lambda1 = 180);
|
||
range[0] = lambda0$1, range[1] = lambda1;
|
||
p0 = null;
|
||
}
|
||
|
||
// Finds the left-right distance between two longitudes.
|
||
// This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want
|
||
// the distance between ±180° to be 360°.
|
||
function angle(lambda0, lambda1) {
|
||
return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1;
|
||
}
|
||
|
||
function rangeCompare(a, b) {
|
||
return a[0] - b[0];
|
||
}
|
||
|
||
function rangeContains(range, x) {
|
||
return range[0] <= range[1] ? range[0] <= x && x <= range[1] : x < range[0] || range[1] < x;
|
||
}
|
||
|
||
function bounds(feature) {
|
||
var i, n, a, b, merged, deltaMax, delta;
|
||
|
||
phi1 = lambda1 = -(lambda0$1 = phi0 = Infinity);
|
||
ranges = [];
|
||
geoStream(feature, boundsStream$1);
|
||
|
||
// First, sort ranges by their minimum longitudes.
|
||
if (n = ranges.length) {
|
||
ranges.sort(rangeCompare);
|
||
|
||
// Then, merge any ranges that overlap.
|
||
for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) {
|
||
b = ranges[i];
|
||
if (rangeContains(a, b[0]) || rangeContains(a, b[1])) {
|
||
if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1];
|
||
if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0];
|
||
} else {
|
||
merged.push(a = b);
|
||
}
|
||
}
|
||
|
||
// Finally, find the largest gap between the merged ranges.
|
||
// The final bounding box will be the inverse of this gap.
|
||
for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) {
|
||
b = merged[i];
|
||
if ((delta = angle(a[1], b[0])) > deltaMax) deltaMax = delta, lambda0$1 = b[0], lambda1 = a[1];
|
||
}
|
||
}
|
||
|
||
ranges = range = null;
|
||
|
||
return lambda0$1 === Infinity || phi0 === Infinity
|
||
? [[NaN, NaN], [NaN, NaN]]
|
||
: [[lambda0$1, phi0], [lambda1, phi1]];
|
||
}
|
||
|
||
var W0, W1,
|
||
X0$1, Y0$1, Z0$1,
|
||
X1$1, Y1$1, Z1$1,
|
||
X2$1, Y2$1, Z2$1,
|
||
lambda00, phi00, // first point
|
||
x0$4, y0$4, z0; // previous point
|
||
|
||
var centroidStream$1 = {
|
||
sphere: noop,
|
||
point: centroidPoint$1,
|
||
lineStart: centroidLineStart$1,
|
||
lineEnd: centroidLineEnd$1,
|
||
polygonStart: function() {
|
||
centroidStream$1.lineStart = centroidRingStart$1;
|
||
centroidStream$1.lineEnd = centroidRingEnd$1;
|
||
},
|
||
polygonEnd: function() {
|
||
centroidStream$1.lineStart = centroidLineStart$1;
|
||
centroidStream$1.lineEnd = centroidLineEnd$1;
|
||
}
|
||
};
|
||
|
||
// Arithmetic mean of Cartesian vectors.
|
||
function centroidPoint$1(lambda, phi) {
|
||
lambda *= radians, phi *= radians;
|
||
var cosPhi = cos(phi);
|
||
centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi));
|
||
}
|
||
|
||
function centroidPointCartesian(x, y, z) {
|
||
++W0;
|
||
X0$1 += (x - X0$1) / W0;
|
||
Y0$1 += (y - Y0$1) / W0;
|
||
Z0$1 += (z - Z0$1) / W0;
|
||
}
|
||
|
||
function centroidLineStart$1() {
|
||
centroidStream$1.point = centroidLinePointFirst;
|
||
}
|
||
|
||
function centroidLinePointFirst(lambda, phi) {
|
||
lambda *= radians, phi *= radians;
|
||
var cosPhi = cos(phi);
|
||
x0$4 = cosPhi * cos(lambda);
|
||
y0$4 = cosPhi * sin(lambda);
|
||
z0 = sin(phi);
|
||
centroidStream$1.point = centroidLinePoint;
|
||
centroidPointCartesian(x0$4, y0$4, z0);
|
||
}
|
||
|
||
function centroidLinePoint(lambda, phi) {
|
||
lambda *= radians, phi *= radians;
|
||
var cosPhi = cos(phi),
|
||
x = cosPhi * cos(lambda),
|
||
y = cosPhi * sin(lambda),
|
||
z = sin(phi),
|
||
w = atan2(sqrt((w = y0$4 * z - z0 * y) * w + (w = z0 * x - x0$4 * z) * w + (w = x0$4 * y - y0$4 * x) * w), x0$4 * x + y0$4 * y + z0 * z);
|
||
W1 += w;
|
||
X1$1 += w * (x0$4 + (x0$4 = x));
|
||
Y1$1 += w * (y0$4 + (y0$4 = y));
|
||
Z1$1 += w * (z0 + (z0 = z));
|
||
centroidPointCartesian(x0$4, y0$4, z0);
|
||
}
|
||
|
||
function centroidLineEnd$1() {
|
||
centroidStream$1.point = centroidPoint$1;
|
||
}
|
||
|
||
// See J. E. Brock, The Inertia Tensor for a Spherical Triangle,
|
||
// J. Applied Mechanics 42, 239 (1975).
|
||
function centroidRingStart$1() {
|
||
centroidStream$1.point = centroidRingPointFirst;
|
||
}
|
||
|
||
function centroidRingEnd$1() {
|
||
centroidRingPoint(lambda00, phi00);
|
||
centroidStream$1.point = centroidPoint$1;
|
||
}
|
||
|
||
function centroidRingPointFirst(lambda, phi) {
|
||
lambda00 = lambda, phi00 = phi;
|
||
lambda *= radians, phi *= radians;
|
||
centroidStream$1.point = centroidRingPoint;
|
||
var cosPhi = cos(phi);
|
||
x0$4 = cosPhi * cos(lambda);
|
||
y0$4 = cosPhi * sin(lambda);
|
||
z0 = sin(phi);
|
||
centroidPointCartesian(x0$4, y0$4, z0);
|
||
}
|
||
|
||
function centroidRingPoint(lambda, phi) {
|
||
lambda *= radians, phi *= radians;
|
||
var cosPhi = cos(phi),
|
||
x = cosPhi * cos(lambda),
|
||
y = cosPhi * sin(lambda),
|
||
z = sin(phi),
|
||
cx = y0$4 * z - z0 * y,
|
||
cy = z0 * x - x0$4 * z,
|
||
cz = x0$4 * y - y0$4 * x,
|
||
m = hypot(cx, cy, cz),
|
||
w = asin(m), // line weight = angle
|
||
v = m && -w / m; // area weight multiplier
|
||
X2$1.add(v * cx);
|
||
Y2$1.add(v * cy);
|
||
Z2$1.add(v * cz);
|
||
W1 += w;
|
||
X1$1 += w * (x0$4 + (x0$4 = x));
|
||
Y1$1 += w * (y0$4 + (y0$4 = y));
|
||
Z1$1 += w * (z0 + (z0 = z));
|
||
centroidPointCartesian(x0$4, y0$4, z0);
|
||
}
|
||
|
||
function centroid(object) {
|
||
W0 = W1 =
|
||
X0$1 = Y0$1 = Z0$1 =
|
||
X1$1 = Y1$1 = Z1$1 = 0;
|
||
X2$1 = new d3Array.Adder();
|
||
Y2$1 = new d3Array.Adder();
|
||
Z2$1 = new d3Array.Adder();
|
||
geoStream(object, centroidStream$1);
|
||
|
||
var x = +X2$1,
|
||
y = +Y2$1,
|
||
z = +Z2$1,
|
||
m = hypot(x, y, z);
|
||
|
||
// If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid.
|
||
if (m < epsilon2) {
|
||
x = X1$1, y = Y1$1, z = Z1$1;
|
||
// If the feature has zero length, fall back to arithmetic mean of point vectors.
|
||
if (W1 < epsilon) x = X0$1, y = Y0$1, z = Z0$1;
|
||
m = hypot(x, y, z);
|
||
// If the feature still has an undefined ccentroid, then return.
|
||
if (m < epsilon2) return [NaN, NaN];
|
||
}
|
||
|
||
return [atan2(y, x) * degrees, asin(z / m) * degrees];
|
||
}
|
||
|
||
function constant(x) {
|
||
return function() {
|
||
return x;
|
||
};
|
||
}
|
||
|
||
function compose(a, b) {
|
||
|
||
function compose(x, y) {
|
||
return x = a(x, y), b(x[0], x[1]);
|
||
}
|
||
|
||
if (a.invert && b.invert) compose.invert = function(x, y) {
|
||
return x = b.invert(x, y), x && a.invert(x[0], x[1]);
|
||
};
|
||
|
||
return compose;
|
||
}
|
||
|
||
function rotationIdentity(lambda, phi) {
|
||
if (abs(lambda) > pi) lambda -= Math.round(lambda / tau) * tau;
|
||
return [lambda, phi];
|
||
}
|
||
|
||
rotationIdentity.invert = rotationIdentity;
|
||
|
||
function rotateRadians(deltaLambda, deltaPhi, deltaGamma) {
|
||
return (deltaLambda %= tau) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma))
|
||
: rotationLambda(deltaLambda))
|
||
: (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma)
|
||
: rotationIdentity);
|
||
}
|
||
|
||
function forwardRotationLambda(deltaLambda) {
|
||
return function(lambda, phi) {
|
||
lambda += deltaLambda;
|
||
if (abs(lambda) > pi) lambda -= Math.round(lambda / tau) * tau;
|
||
return [lambda, phi];
|
||
};
|
||
}
|
||
|
||
function rotationLambda(deltaLambda) {
|
||
var rotation = forwardRotationLambda(deltaLambda);
|
||
rotation.invert = forwardRotationLambda(-deltaLambda);
|
||
return rotation;
|
||
}
|
||
|
||
function rotationPhiGamma(deltaPhi, deltaGamma) {
|
||
var cosDeltaPhi = cos(deltaPhi),
|
||
sinDeltaPhi = sin(deltaPhi),
|
||
cosDeltaGamma = cos(deltaGamma),
|
||
sinDeltaGamma = sin(deltaGamma);
|
||
|
||
function rotation(lambda, phi) {
|
||
var cosPhi = cos(phi),
|
||
x = cos(lambda) * cosPhi,
|
||
y = sin(lambda) * cosPhi,
|
||
z = sin(phi),
|
||
k = z * cosDeltaPhi + x * sinDeltaPhi;
|
||
return [
|
||
atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi),
|
||
asin(k * cosDeltaGamma + y * sinDeltaGamma)
|
||
];
|
||
}
|
||
|
||
rotation.invert = function(lambda, phi) {
|
||
var cosPhi = cos(phi),
|
||
x = cos(lambda) * cosPhi,
|
||
y = sin(lambda) * cosPhi,
|
||
z = sin(phi),
|
||
k = z * cosDeltaGamma - y * sinDeltaGamma;
|
||
return [
|
||
atan2(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi),
|
||
asin(k * cosDeltaPhi - x * sinDeltaPhi)
|
||
];
|
||
};
|
||
|
||
return rotation;
|
||
}
|
||
|
||
function rotation(rotate) {
|
||
rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0);
|
||
|
||
function forward(coordinates) {
|
||
coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians);
|
||
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
|
||
}
|
||
|
||
forward.invert = function(coordinates) {
|
||
coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians);
|
||
return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
|
||
};
|
||
|
||
return forward;
|
||
}
|
||
|
||
// Generates a circle centered at [0°, 0°], with a given radius and precision.
|
||
function circleStream(stream, radius, delta, direction, t0, t1) {
|
||
if (!delta) return;
|
||
var cosRadius = cos(radius),
|
||
sinRadius = sin(radius),
|
||
step = direction * delta;
|
||
if (t0 == null) {
|
||
t0 = radius + direction * tau;
|
||
t1 = radius - step / 2;
|
||
} else {
|
||
t0 = circleRadius(cosRadius, t0);
|
||
t1 = circleRadius(cosRadius, t1);
|
||
if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau;
|
||
}
|
||
for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) {
|
||
point = spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]);
|
||
stream.point(point[0], point[1]);
|
||
}
|
||
}
|
||
|
||
// Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0].
|
||
function circleRadius(cosRadius, point) {
|
||
point = cartesian(point), point[0] -= cosRadius;
|
||
cartesianNormalizeInPlace(point);
|
||
var radius = acos(-point[1]);
|
||
return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau;
|
||
}
|
||
|
||
function circle() {
|
||
var center = constant([0, 0]),
|
||
radius = constant(90),
|
||
precision = constant(2),
|
||
ring,
|
||
rotate,
|
||
stream = {point: point};
|
||
|
||
function point(x, y) {
|
||
ring.push(x = rotate(x, y));
|
||
x[0] *= degrees, x[1] *= degrees;
|
||
}
|
||
|
||
function circle() {
|
||
var c = center.apply(this, arguments),
|
||
r = radius.apply(this, arguments) * radians,
|
||
p = precision.apply(this, arguments) * radians;
|
||
ring = [];
|
||
rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert;
|
||
circleStream(stream, r, p, 1);
|
||
c = {type: "Polygon", coordinates: [ring]};
|
||
ring = rotate = null;
|
||
return c;
|
||
}
|
||
|
||
circle.center = function(_) {
|
||
return arguments.length ? (center = typeof _ === "function" ? _ : constant([+_[0], +_[1]]), circle) : center;
|
||
};
|
||
|
||
circle.radius = function(_) {
|
||
return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), circle) : radius;
|
||
};
|
||
|
||
circle.precision = function(_) {
|
||
return arguments.length ? (precision = typeof _ === "function" ? _ : constant(+_), circle) : precision;
|
||
};
|
||
|
||
return circle;
|
||
}
|
||
|
||
function clipBuffer() {
|
||
var lines = [],
|
||
line;
|
||
return {
|
||
point: function(x, y, m) {
|
||
line.push([x, y, m]);
|
||
},
|
||
lineStart: function() {
|
||
lines.push(line = []);
|
||
},
|
||
lineEnd: noop,
|
||
rejoin: function() {
|
||
if (lines.length > 1) lines.push(lines.pop().concat(lines.shift()));
|
||
},
|
||
result: function() {
|
||
var result = lines;
|
||
lines = [];
|
||
line = null;
|
||
return result;
|
||
}
|
||
};
|
||
}
|
||
|
||
function pointEqual(a, b) {
|
||
return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon;
|
||
}
|
||
|
||
function Intersection(point, points, other, entry) {
|
||
this.x = point;
|
||
this.z = points;
|
||
this.o = other; // another intersection
|
||
this.e = entry; // is an entry?
|
||
this.v = false; // visited
|
||
this.n = this.p = null; // next & previous
|
||
}
|
||
|
||
// A generalized polygon clipping algorithm: given a polygon that has been cut
|
||
// into its visible line segments, and rejoins the segments by interpolating
|
||
// along the clip edge.
|
||
function clipRejoin(segments, compareIntersection, startInside, interpolate, stream) {
|
||
var subject = [],
|
||
clip = [],
|
||
i,
|
||
n;
|
||
|
||
segments.forEach(function(segment) {
|
||
if ((n = segment.length - 1) <= 0) return;
|
||
var n, p0 = segment[0], p1 = segment[n], x;
|
||
|
||
if (pointEqual(p0, p1)) {
|
||
if (!p0[2] && !p1[2]) {
|
||
stream.lineStart();
|
||
for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]);
|
||
stream.lineEnd();
|
||
return;
|
||
}
|
||
// handle degenerate cases by moving the point
|
||
p1[0] += 2 * epsilon;
|
||
}
|
||
|
||
subject.push(x = new Intersection(p0, segment, null, true));
|
||
clip.push(x.o = new Intersection(p0, null, x, false));
|
||
subject.push(x = new Intersection(p1, segment, null, false));
|
||
clip.push(x.o = new Intersection(p1, null, x, true));
|
||
});
|
||
|
||
if (!subject.length) return;
|
||
|
||
clip.sort(compareIntersection);
|
||
link(subject);
|
||
link(clip);
|
||
|
||
for (i = 0, n = clip.length; i < n; ++i) {
|
||
clip[i].e = startInside = !startInside;
|
||
}
|
||
|
||
var start = subject[0],
|
||
points,
|
||
point;
|
||
|
||
while (1) {
|
||
// Find first unvisited intersection.
|
||
var current = start,
|
||
isSubject = true;
|
||
while (current.v) if ((current = current.n) === start) return;
|
||
points = current.z;
|
||
stream.lineStart();
|
||
do {
|
||
current.v = current.o.v = true;
|
||
if (current.e) {
|
||
if (isSubject) {
|
||
for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]);
|
||
} else {
|
||
interpolate(current.x, current.n.x, 1, stream);
|
||
}
|
||
current = current.n;
|
||
} else {
|
||
if (isSubject) {
|
||
points = current.p.z;
|
||
for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]);
|
||
} else {
|
||
interpolate(current.x, current.p.x, -1, stream);
|
||
}
|
||
current = current.p;
|
||
}
|
||
current = current.o;
|
||
points = current.z;
|
||
isSubject = !isSubject;
|
||
} while (!current.v);
|
||
stream.lineEnd();
|
||
}
|
||
}
|
||
|
||
function link(array) {
|
||
if (!(n = array.length)) return;
|
||
var n,
|
||
i = 0,
|
||
a = array[0],
|
||
b;
|
||
while (++i < n) {
|
||
a.n = b = array[i];
|
||
b.p = a;
|
||
a = b;
|
||
}
|
||
a.n = b = array[0];
|
||
b.p = a;
|
||
}
|
||
|
||
function longitude(point) {
|
||
return abs(point[0]) <= pi ? point[0] : sign(point[0]) * ((abs(point[0]) + pi) % tau - pi);
|
||
}
|
||
|
||
function polygonContains(polygon, point) {
|
||
var lambda = longitude(point),
|
||
phi = point[1],
|
||
sinPhi = sin(phi),
|
||
normal = [sin(lambda), -cos(lambda), 0],
|
||
angle = 0,
|
||
winding = 0;
|
||
|
||
var sum = new d3Array.Adder();
|
||
|
||
if (sinPhi === 1) phi = halfPi + epsilon;
|
||
else if (sinPhi === -1) phi = -halfPi - epsilon;
|
||
|
||
for (var i = 0, n = polygon.length; i < n; ++i) {
|
||
if (!(m = (ring = polygon[i]).length)) continue;
|
||
var ring,
|
||
m,
|
||
point0 = ring[m - 1],
|
||
lambda0 = longitude(point0),
|
||
phi0 = point0[1] / 2 + quarterPi,
|
||
sinPhi0 = sin(phi0),
|
||
cosPhi0 = cos(phi0);
|
||
|
||
for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
|
||
var point1 = ring[j],
|
||
lambda1 = longitude(point1),
|
||
phi1 = point1[1] / 2 + quarterPi,
|
||
sinPhi1 = sin(phi1),
|
||
cosPhi1 = cos(phi1),
|
||
delta = lambda1 - lambda0,
|
||
sign = delta >= 0 ? 1 : -1,
|
||
absDelta = sign * delta,
|
||
antimeridian = absDelta > pi,
|
||
k = sinPhi0 * sinPhi1;
|
||
|
||
sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));
|
||
angle += antimeridian ? delta + sign * tau : delta;
|
||
|
||
// Are the longitudes either side of the point’s meridian (lambda),
|
||
// and are the latitudes smaller than the parallel (phi)?
|
||
if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
|
||
var arc = cartesianCross(cartesian(point0), cartesian(point1));
|
||
cartesianNormalizeInPlace(arc);
|
||
var intersection = cartesianCross(normal, arc);
|
||
cartesianNormalizeInPlace(intersection);
|
||
var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);
|
||
if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
|
||
winding += antimeridian ^ delta >= 0 ? 1 : -1;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// First, determine whether the South pole is inside or outside:
|
||
//
|
||
// It is inside if:
|
||
// * the polygon winds around it in a clockwise direction.
|
||
// * the polygon does not (cumulatively) wind around it, but has a negative
|
||
// (counter-clockwise) area.
|
||
//
|
||
// Second, count the (signed) number of times a segment crosses a lambda
|
||
// from the point to the South pole. If it is zero, then the point is the
|
||
// same side as the South pole.
|
||
|
||
return (angle < -epsilon || angle < epsilon && sum < -epsilon2) ^ (winding & 1);
|
||
}
|
||
|
||
function clip(pointVisible, clipLine, interpolate, start) {
|
||
return function(sink) {
|
||
var line = clipLine(sink),
|
||
ringBuffer = clipBuffer(),
|
||
ringSink = clipLine(ringBuffer),
|
||
polygonStarted = false,
|
||
polygon,
|
||
segments,
|
||
ring;
|
||
|
||
var clip = {
|
||
point: point,
|
||
lineStart: lineStart,
|
||
lineEnd: lineEnd,
|
||
polygonStart: function() {
|
||
clip.point = pointRing;
|
||
clip.lineStart = ringStart;
|
||
clip.lineEnd = ringEnd;
|
||
segments = [];
|
||
polygon = [];
|
||
},
|
||
polygonEnd: function() {
|
||
clip.point = point;
|
||
clip.lineStart = lineStart;
|
||
clip.lineEnd = lineEnd;
|
||
segments = d3Array.merge(segments);
|
||
var startInside = polygonContains(polygon, start);
|
||
if (segments.length) {
|
||
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
|
||
clipRejoin(segments, compareIntersection, startInside, interpolate, sink);
|
||
} else if (startInside) {
|
||
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
|
||
sink.lineStart();
|
||
interpolate(null, null, 1, sink);
|
||
sink.lineEnd();
|
||
}
|
||
if (polygonStarted) sink.polygonEnd(), polygonStarted = false;
|
||
segments = polygon = null;
|
||
},
|
||
sphere: function() {
|
||
sink.polygonStart();
|
||
sink.lineStart();
|
||
interpolate(null, null, 1, sink);
|
||
sink.lineEnd();
|
||
sink.polygonEnd();
|
||
}
|
||
};
|
||
|
||
function point(lambda, phi) {
|
||
if (pointVisible(lambda, phi)) sink.point(lambda, phi);
|
||
}
|
||
|
||
function pointLine(lambda, phi) {
|
||
line.point(lambda, phi);
|
||
}
|
||
|
||
function lineStart() {
|
||
clip.point = pointLine;
|
||
line.lineStart();
|
||
}
|
||
|
||
function lineEnd() {
|
||
clip.point = point;
|
||
line.lineEnd();
|
||
}
|
||
|
||
function pointRing(lambda, phi) {
|
||
ring.push([lambda, phi]);
|
||
ringSink.point(lambda, phi);
|
||
}
|
||
|
||
function ringStart() {
|
||
ringSink.lineStart();
|
||
ring = [];
|
||
}
|
||
|
||
function ringEnd() {
|
||
pointRing(ring[0][0], ring[0][1]);
|
||
ringSink.lineEnd();
|
||
|
||
var clean = ringSink.clean(),
|
||
ringSegments = ringBuffer.result(),
|
||
i, n = ringSegments.length, m,
|
||
segment,
|
||
point;
|
||
|
||
ring.pop();
|
||
polygon.push(ring);
|
||
ring = null;
|
||
|
||
if (!n) return;
|
||
|
||
// No intersections.
|
||
if (clean & 1) {
|
||
segment = ringSegments[0];
|
||
if ((m = segment.length - 1) > 0) {
|
||
if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
|
||
sink.lineStart();
|
||
for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]);
|
||
sink.lineEnd();
|
||
}
|
||
return;
|
||
}
|
||
|
||
// Rejoin connected segments.
|
||
// TODO reuse ringBuffer.rejoin()?
|
||
if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift()));
|
||
|
||
segments.push(ringSegments.filter(validSegment));
|
||
}
|
||
|
||
return clip;
|
||
};
|
||
}
|
||
|
||
function validSegment(segment) {
|
||
return segment.length > 1;
|
||
}
|
||
|
||
// Intersections are sorted along the clip edge. For both antimeridian cutting
|
||
// and circle clipping, the same comparison is used.
|
||
function compareIntersection(a, b) {
|
||
return ((a = a.x)[0] < 0 ? a[1] - halfPi - epsilon : halfPi - a[1])
|
||
- ((b = b.x)[0] < 0 ? b[1] - halfPi - epsilon : halfPi - b[1]);
|
||
}
|
||
|
||
var clipAntimeridian = clip(
|
||
function() { return true; },
|
||
clipAntimeridianLine,
|
||
clipAntimeridianInterpolate,
|
||
[-pi, -halfPi]
|
||
);
|
||
|
||
// Takes a line and cuts into visible segments. Return values: 0 - there were
|
||
// intersections or the line was empty; 1 - no intersections; 2 - there were
|
||
// intersections, and the first and last segments should be rejoined.
|
||
function clipAntimeridianLine(stream) {
|
||
var lambda0 = NaN,
|
||
phi0 = NaN,
|
||
sign0 = NaN,
|
||
clean; // no intersections
|
||
|
||
return {
|
||
lineStart: function() {
|
||
stream.lineStart();
|
||
clean = 1;
|
||
},
|
||
point: function(lambda1, phi1) {
|
||
var sign1 = lambda1 > 0 ? pi : -pi,
|
||
delta = abs(lambda1 - lambda0);
|
||
if (abs(delta - pi) < epsilon) { // line crosses a pole
|
||
stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi : -halfPi);
|
||
stream.point(sign0, phi0);
|
||
stream.lineEnd();
|
||
stream.lineStart();
|
||
stream.point(sign1, phi0);
|
||
stream.point(lambda1, phi0);
|
||
clean = 0;
|
||
} else if (sign0 !== sign1 && delta >= pi) { // line crosses antimeridian
|
||
if (abs(lambda0 - sign0) < epsilon) lambda0 -= sign0 * epsilon; // handle degeneracies
|
||
if (abs(lambda1 - sign1) < epsilon) lambda1 -= sign1 * epsilon;
|
||
phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1);
|
||
stream.point(sign0, phi0);
|
||
stream.lineEnd();
|
||
stream.lineStart();
|
||
stream.point(sign1, phi0);
|
||
clean = 0;
|
||
}
|
||
stream.point(lambda0 = lambda1, phi0 = phi1);
|
||
sign0 = sign1;
|
||
},
|
||
lineEnd: function() {
|
||
stream.lineEnd();
|
||
lambda0 = phi0 = NaN;
|
||
},
|
||
clean: function() {
|
||
return 2 - clean; // if intersections, rejoin first and last segments
|
||
}
|
||
};
|
||
}
|
||
|
||
function clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) {
|
||
var cosPhi0,
|
||
cosPhi1,
|
||
sinLambda0Lambda1 = sin(lambda0 - lambda1);
|
||
return abs(sinLambda0Lambda1) > epsilon
|
||
? atan((sin(phi0) * (cosPhi1 = cos(phi1)) * sin(lambda1)
|
||
- sin(phi1) * (cosPhi0 = cos(phi0)) * sin(lambda0))
|
||
/ (cosPhi0 * cosPhi1 * sinLambda0Lambda1))
|
||
: (phi0 + phi1) / 2;
|
||
}
|
||
|
||
function clipAntimeridianInterpolate(from, to, direction, stream) {
|
||
var phi;
|
||
if (from == null) {
|
||
phi = direction * halfPi;
|
||
stream.point(-pi, phi);
|
||
stream.point(0, phi);
|
||
stream.point(pi, phi);
|
||
stream.point(pi, 0);
|
||
stream.point(pi, -phi);
|
||
stream.point(0, -phi);
|
||
stream.point(-pi, -phi);
|
||
stream.point(-pi, 0);
|
||
stream.point(-pi, phi);
|
||
} else if (abs(from[0] - to[0]) > epsilon) {
|
||
var lambda = from[0] < to[0] ? pi : -pi;
|
||
phi = direction * lambda / 2;
|
||
stream.point(-lambda, phi);
|
||
stream.point(0, phi);
|
||
stream.point(lambda, phi);
|
||
} else {
|
||
stream.point(to[0], to[1]);
|
||
}
|
||
}
|
||
|
||
function clipCircle(radius) {
|
||
var cr = cos(radius),
|
||
delta = 2 * radians,
|
||
smallRadius = cr > 0,
|
||
notHemisphere = abs(cr) > epsilon; // TODO optimise for this common case
|
||
|
||
function interpolate(from, to, direction, stream) {
|
||
circleStream(stream, radius, delta, direction, from, to);
|
||
}
|
||
|
||
function visible(lambda, phi) {
|
||
return cos(lambda) * cos(phi) > cr;
|
||
}
|
||
|
||
// Takes a line and cuts into visible segments. Return values used for polygon
|
||
// clipping: 0 - there were intersections or the line was empty; 1 - no
|
||
// intersections 2 - there were intersections, and the first and last segments
|
||
// should be rejoined.
|
||
function clipLine(stream) {
|
||
var point0, // previous point
|
||
c0, // code for previous point
|
||
v0, // visibility of previous point
|
||
v00, // visibility of first point
|
||
clean; // no intersections
|
||
return {
|
||
lineStart: function() {
|
||
v00 = v0 = false;
|
||
clean = 1;
|
||
},
|
||
point: function(lambda, phi) {
|
||
var point1 = [lambda, phi],
|
||
point2,
|
||
v = visible(lambda, phi),
|
||
c = smallRadius
|
||
? v ? 0 : code(lambda, phi)
|
||
: v ? code(lambda + (lambda < 0 ? pi : -pi), phi) : 0;
|
||
if (!point0 && (v00 = v0 = v)) stream.lineStart();
|
||
if (v !== v0) {
|
||
point2 = intersect(point0, point1);
|
||
if (!point2 || pointEqual(point0, point2) || pointEqual(point1, point2))
|
||
point1[2] = 1;
|
||
}
|
||
if (v !== v0) {
|
||
clean = 0;
|
||
if (v) {
|
||
// outside going in
|
||
stream.lineStart();
|
||
point2 = intersect(point1, point0);
|
||
stream.point(point2[0], point2[1]);
|
||
} else {
|
||
// inside going out
|
||
point2 = intersect(point0, point1);
|
||
stream.point(point2[0], point2[1], 2);
|
||
stream.lineEnd();
|
||
}
|
||
point0 = point2;
|
||
} else if (notHemisphere && point0 && smallRadius ^ v) {
|
||
var t;
|
||
// If the codes for two points are different, or are both zero,
|
||
// and there this segment intersects with the small circle.
|
||
if (!(c & c0) && (t = intersect(point1, point0, true))) {
|
||
clean = 0;
|
||
if (smallRadius) {
|
||
stream.lineStart();
|
||
stream.point(t[0][0], t[0][1]);
|
||
stream.point(t[1][0], t[1][1]);
|
||
stream.lineEnd();
|
||
} else {
|
||
stream.point(t[1][0], t[1][1]);
|
||
stream.lineEnd();
|
||
stream.lineStart();
|
||
stream.point(t[0][0], t[0][1], 3);
|
||
}
|
||
}
|
||
}
|
||
if (v && (!point0 || !pointEqual(point0, point1))) {
|
||
stream.point(point1[0], point1[1]);
|
||
}
|
||
point0 = point1, v0 = v, c0 = c;
|
||
},
|
||
lineEnd: function() {
|
||
if (v0) stream.lineEnd();
|
||
point0 = null;
|
||
},
|
||
// Rejoin first and last segments if there were intersections and the first
|
||
// and last points were visible.
|
||
clean: function() {
|
||
return clean | ((v00 && v0) << 1);
|
||
}
|
||
};
|
||
}
|
||
|
||
// Intersects the great circle between a and b with the clip circle.
|
||
function intersect(a, b, two) {
|
||
var pa = cartesian(a),
|
||
pb = cartesian(b);
|
||
|
||
// We have two planes, n1.p = d1 and n2.p = d2.
|
||
// Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 ⨯ n2).
|
||
var n1 = [1, 0, 0], // normal
|
||
n2 = cartesianCross(pa, pb),
|
||
n2n2 = cartesianDot(n2, n2),
|
||
n1n2 = n2[0], // cartesianDot(n1, n2),
|
||
determinant = n2n2 - n1n2 * n1n2;
|
||
|
||
// Two polar points.
|
||
if (!determinant) return !two && a;
|
||
|
||
var c1 = cr * n2n2 / determinant,
|
||
c2 = -cr * n1n2 / determinant,
|
||
n1xn2 = cartesianCross(n1, n2),
|
||
A = cartesianScale(n1, c1),
|
||
B = cartesianScale(n2, c2);
|
||
cartesianAddInPlace(A, B);
|
||
|
||
// Solve |p(t)|^2 = 1.
|
||
var u = n1xn2,
|
||
w = cartesianDot(A, u),
|
||
uu = cartesianDot(u, u),
|
||
t2 = w * w - uu * (cartesianDot(A, A) - 1);
|
||
|
||
if (t2 < 0) return;
|
||
|
||
var t = sqrt(t2),
|
||
q = cartesianScale(u, (-w - t) / uu);
|
||
cartesianAddInPlace(q, A);
|
||
q = spherical(q);
|
||
|
||
if (!two) return q;
|
||
|
||
// Two intersection points.
|
||
var lambda0 = a[0],
|
||
lambda1 = b[0],
|
||
phi0 = a[1],
|
||
phi1 = b[1],
|
||
z;
|
||
|
||
if (lambda1 < lambda0) z = lambda0, lambda0 = lambda1, lambda1 = z;
|
||
|
||
var delta = lambda1 - lambda0,
|
||
polar = abs(delta - pi) < epsilon,
|
||
meridian = polar || delta < epsilon;
|
||
|
||
if (!polar && phi1 < phi0) z = phi0, phi0 = phi1, phi1 = z;
|
||
|
||
// Check that the first point is between a and b.
|
||
if (meridian
|
||
? polar
|
||
? phi0 + phi1 > 0 ^ q[1] < (abs(q[0] - lambda0) < epsilon ? phi0 : phi1)
|
||
: phi0 <= q[1] && q[1] <= phi1
|
||
: delta > pi ^ (lambda0 <= q[0] && q[0] <= lambda1)) {
|
||
var q1 = cartesianScale(u, (-w + t) / uu);
|
||
cartesianAddInPlace(q1, A);
|
||
return [q, spherical(q1)];
|
||
}
|
||
}
|
||
|
||
// Generates a 4-bit vector representing the location of a point relative to
|
||
// the small circle's bounding box.
|
||
function code(lambda, phi) {
|
||
var r = smallRadius ? radius : pi - radius,
|
||
code = 0;
|
||
if (lambda < -r) code |= 1; // left
|
||
else if (lambda > r) code |= 2; // right
|
||
if (phi < -r) code |= 4; // below
|
||
else if (phi > r) code |= 8; // above
|
||
return code;
|
||
}
|
||
|
||
return clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-pi, radius - pi]);
|
||
}
|
||
|
||
function clipLine(a, b, x0, y0, x1, y1) {
|
||
var ax = a[0],
|
||
ay = a[1],
|
||
bx = b[0],
|
||
by = b[1],
|
||
t0 = 0,
|
||
t1 = 1,
|
||
dx = bx - ax,
|
||
dy = by - ay,
|
||
r;
|
||
|
||
r = x0 - ax;
|
||
if (!dx && r > 0) return;
|
||
r /= dx;
|
||
if (dx < 0) {
|
||
if (r < t0) return;
|
||
if (r < t1) t1 = r;
|
||
} else if (dx > 0) {
|
||
if (r > t1) return;
|
||
if (r > t0) t0 = r;
|
||
}
|
||
|
||
r = x1 - ax;
|
||
if (!dx && r < 0) return;
|
||
r /= dx;
|
||
if (dx < 0) {
|
||
if (r > t1) return;
|
||
if (r > t0) t0 = r;
|
||
} else if (dx > 0) {
|
||
if (r < t0) return;
|
||
if (r < t1) t1 = r;
|
||
}
|
||
|
||
r = y0 - ay;
|
||
if (!dy && r > 0) return;
|
||
r /= dy;
|
||
if (dy < 0) {
|
||
if (r < t0) return;
|
||
if (r < t1) t1 = r;
|
||
} else if (dy > 0) {
|
||
if (r > t1) return;
|
||
if (r > t0) t0 = r;
|
||
}
|
||
|
||
r = y1 - ay;
|
||
if (!dy && r < 0) return;
|
||
r /= dy;
|
||
if (dy < 0) {
|
||
if (r > t1) return;
|
||
if (r > t0) t0 = r;
|
||
} else if (dy > 0) {
|
||
if (r < t0) return;
|
||
if (r < t1) t1 = r;
|
||
}
|
||
|
||
if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy;
|
||
if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy;
|
||
return true;
|
||
}
|
||
|
||
var clipMax = 1e9, clipMin = -clipMax;
|
||
|
||
// TODO Use d3-polygon’s polygonContains here for the ring check?
|
||
// TODO Eliminate duplicate buffering in clipBuffer and polygon.push?
|
||
|
||
function clipRectangle(x0, y0, x1, y1) {
|
||
|
||
function visible(x, y) {
|
||
return x0 <= x && x <= x1 && y0 <= y && y <= y1;
|
||
}
|
||
|
||
function interpolate(from, to, direction, stream) {
|
||
var a = 0, a1 = 0;
|
||
if (from == null
|
||
|| (a = corner(from, direction)) !== (a1 = corner(to, direction))
|
||
|| comparePoint(from, to) < 0 ^ direction > 0) {
|
||
do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0);
|
||
while ((a = (a + direction + 4) % 4) !== a1);
|
||
} else {
|
||
stream.point(to[0], to[1]);
|
||
}
|
||
}
|
||
|
||
function corner(p, direction) {
|
||
return abs(p[0] - x0) < epsilon ? direction > 0 ? 0 : 3
|
||
: abs(p[0] - x1) < epsilon ? direction > 0 ? 2 : 1
|
||
: abs(p[1] - y0) < epsilon ? direction > 0 ? 1 : 0
|
||
: direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon
|
||
}
|
||
|
||
function compareIntersection(a, b) {
|
||
return comparePoint(a.x, b.x);
|
||
}
|
||
|
||
function comparePoint(a, b) {
|
||
var ca = corner(a, 1),
|
||
cb = corner(b, 1);
|
||
return ca !== cb ? ca - cb
|
||
: ca === 0 ? b[1] - a[1]
|
||
: ca === 1 ? a[0] - b[0]
|
||
: ca === 2 ? a[1] - b[1]
|
||
: b[0] - a[0];
|
||
}
|
||
|
||
return function(stream) {
|
||
var activeStream = stream,
|
||
bufferStream = clipBuffer(),
|
||
segments,
|
||
polygon,
|
||
ring,
|
||
x__, y__, v__, // first point
|
||
x_, y_, v_, // previous point
|
||
first,
|
||
clean;
|
||
|
||
var clipStream = {
|
||
point: point,
|
||
lineStart: lineStart,
|
||
lineEnd: lineEnd,
|
||
polygonStart: polygonStart,
|
||
polygonEnd: polygonEnd
|
||
};
|
||
|
||
function point(x, y) {
|
||
if (visible(x, y)) activeStream.point(x, y);
|
||
}
|
||
|
||
function polygonInside() {
|
||
var winding = 0;
|
||
|
||
for (var i = 0, n = polygon.length; i < n; ++i) {
|
||
for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) {
|
||
a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1];
|
||
if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; }
|
||
else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; }
|
||
}
|
||
}
|
||
|
||
return winding;
|
||
}
|
||
|
||
// Buffer geometry within a polygon and then clip it en masse.
|
||
function polygonStart() {
|
||
activeStream = bufferStream, segments = [], polygon = [], clean = true;
|
||
}
|
||
|
||
function polygonEnd() {
|
||
var startInside = polygonInside(),
|
||
cleanInside = clean && startInside,
|
||
visible = (segments = d3Array.merge(segments)).length;
|
||
if (cleanInside || visible) {
|
||
stream.polygonStart();
|
||
if (cleanInside) {
|
||
stream.lineStart();
|
||
interpolate(null, null, 1, stream);
|
||
stream.lineEnd();
|
||
}
|
||
if (visible) {
|
||
clipRejoin(segments, compareIntersection, startInside, interpolate, stream);
|
||
}
|
||
stream.polygonEnd();
|
||
}
|
||
activeStream = stream, segments = polygon = ring = null;
|
||
}
|
||
|
||
function lineStart() {
|
||
clipStream.point = linePoint;
|
||
if (polygon) polygon.push(ring = []);
|
||
first = true;
|
||
v_ = false;
|
||
x_ = y_ = NaN;
|
||
}
|
||
|
||
// TODO rather than special-case polygons, simply handle them separately.
|
||
// Ideally, coincident intersection points should be jittered to avoid
|
||
// clipping issues.
|
||
function lineEnd() {
|
||
if (segments) {
|
||
linePoint(x__, y__);
|
||
if (v__ && v_) bufferStream.rejoin();
|
||
segments.push(bufferStream.result());
|
||
}
|
||
clipStream.point = point;
|
||
if (v_) activeStream.lineEnd();
|
||
}
|
||
|
||
function linePoint(x, y) {
|
||
var v = visible(x, y);
|
||
if (polygon) ring.push([x, y]);
|
||
if (first) {
|
||
x__ = x, y__ = y, v__ = v;
|
||
first = false;
|
||
if (v) {
|
||
activeStream.lineStart();
|
||
activeStream.point(x, y);
|
||
}
|
||
} else {
|
||
if (v && v_) activeStream.point(x, y);
|
||
else {
|
||
var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))],
|
||
b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))];
|
||
if (clipLine(a, b, x0, y0, x1, y1)) {
|
||
if (!v_) {
|
||
activeStream.lineStart();
|
||
activeStream.point(a[0], a[1]);
|
||
}
|
||
activeStream.point(b[0], b[1]);
|
||
if (!v) activeStream.lineEnd();
|
||
clean = false;
|
||
} else if (v) {
|
||
activeStream.lineStart();
|
||
activeStream.point(x, y);
|
||
clean = false;
|
||
}
|
||
}
|
||
}
|
||
x_ = x, y_ = y, v_ = v;
|
||
}
|
||
|
||
return clipStream;
|
||
};
|
||
}
|
||
|
||
function extent() {
|
||
var x0 = 0,
|
||
y0 = 0,
|
||
x1 = 960,
|
||
y1 = 500,
|
||
cache,
|
||
cacheStream,
|
||
clip;
|
||
|
||
return clip = {
|
||
stream: function(stream) {
|
||
return cache && cacheStream === stream ? cache : cache = clipRectangle(x0, y0, x1, y1)(cacheStream = stream);
|
||
},
|
||
extent: function(_) {
|
||
return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]];
|
||
}
|
||
};
|
||
}
|
||
|
||
var lengthSum$1,
|
||
lambda0,
|
||
sinPhi0,
|
||
cosPhi0;
|
||
|
||
var lengthStream$1 = {
|
||
sphere: noop,
|
||
point: noop,
|
||
lineStart: lengthLineStart,
|
||
lineEnd: noop,
|
||
polygonStart: noop,
|
||
polygonEnd: noop
|
||
};
|
||
|
||
function lengthLineStart() {
|
||
lengthStream$1.point = lengthPointFirst$1;
|
||
lengthStream$1.lineEnd = lengthLineEnd;
|
||
}
|
||
|
||
function lengthLineEnd() {
|
||
lengthStream$1.point = lengthStream$1.lineEnd = noop;
|
||
}
|
||
|
||
function lengthPointFirst$1(lambda, phi) {
|
||
lambda *= radians, phi *= radians;
|
||
lambda0 = lambda, sinPhi0 = sin(phi), cosPhi0 = cos(phi);
|
||
lengthStream$1.point = lengthPoint$1;
|
||
}
|
||
|
||
function lengthPoint$1(lambda, phi) {
|
||
lambda *= radians, phi *= radians;
|
||
var sinPhi = sin(phi),
|
||
cosPhi = cos(phi),
|
||
delta = abs(lambda - lambda0),
|
||
cosDelta = cos(delta),
|
||
sinDelta = sin(delta),
|
||
x = cosPhi * sinDelta,
|
||
y = cosPhi0 * sinPhi - sinPhi0 * cosPhi * cosDelta,
|
||
z = sinPhi0 * sinPhi + cosPhi0 * cosPhi * cosDelta;
|
||
lengthSum$1.add(atan2(sqrt(x * x + y * y), z));
|
||
lambda0 = lambda, sinPhi0 = sinPhi, cosPhi0 = cosPhi;
|
||
}
|
||
|
||
function length(object) {
|
||
lengthSum$1 = new d3Array.Adder();
|
||
geoStream(object, lengthStream$1);
|
||
return +lengthSum$1;
|
||
}
|
||
|
||
var coordinates = [null, null],
|
||
object = {type: "LineString", coordinates: coordinates};
|
||
|
||
function distance(a, b) {
|
||
coordinates[0] = a;
|
||
coordinates[1] = b;
|
||
return length(object);
|
||
}
|
||
|
||
var containsObjectType = {
|
||
Feature: function(object, point) {
|
||
return containsGeometry(object.geometry, point);
|
||
},
|
||
FeatureCollection: function(object, point) {
|
||
var features = object.features, i = -1, n = features.length;
|
||
while (++i < n) if (containsGeometry(features[i].geometry, point)) return true;
|
||
return false;
|
||
}
|
||
};
|
||
|
||
var containsGeometryType = {
|
||
Sphere: function() {
|
||
return true;
|
||
},
|
||
Point: function(object, point) {
|
||
return containsPoint(object.coordinates, point);
|
||
},
|
||
MultiPoint: function(object, point) {
|
||
var coordinates = object.coordinates, i = -1, n = coordinates.length;
|
||
while (++i < n) if (containsPoint(coordinates[i], point)) return true;
|
||
return false;
|
||
},
|
||
LineString: function(object, point) {
|
||
return containsLine(object.coordinates, point);
|
||
},
|
||
MultiLineString: function(object, point) {
|
||
var coordinates = object.coordinates, i = -1, n = coordinates.length;
|
||
while (++i < n) if (containsLine(coordinates[i], point)) return true;
|
||
return false;
|
||
},
|
||
Polygon: function(object, point) {
|
||
return containsPolygon(object.coordinates, point);
|
||
},
|
||
MultiPolygon: function(object, point) {
|
||
var coordinates = object.coordinates, i = -1, n = coordinates.length;
|
||
while (++i < n) if (containsPolygon(coordinates[i], point)) return true;
|
||
return false;
|
||
},
|
||
GeometryCollection: function(object, point) {
|
||
var geometries = object.geometries, i = -1, n = geometries.length;
|
||
while (++i < n) if (containsGeometry(geometries[i], point)) return true;
|
||
return false;
|
||
}
|
||
};
|
||
|
||
function containsGeometry(geometry, point) {
|
||
return geometry && containsGeometryType.hasOwnProperty(geometry.type)
|
||
? containsGeometryType[geometry.type](geometry, point)
|
||
: false;
|
||
}
|
||
|
||
function containsPoint(coordinates, point) {
|
||
return distance(coordinates, point) === 0;
|
||
}
|
||
|
||
function containsLine(coordinates, point) {
|
||
var ao, bo, ab;
|
||
for (var i = 0, n = coordinates.length; i < n; i++) {
|
||
bo = distance(coordinates[i], point);
|
||
if (bo === 0) return true;
|
||
if (i > 0) {
|
||
ab = distance(coordinates[i], coordinates[i - 1]);
|
||
if (
|
||
ab > 0 &&
|
||
ao <= ab &&
|
||
bo <= ab &&
|
||
(ao + bo - ab) * (1 - Math.pow((ao - bo) / ab, 2)) < epsilon2 * ab
|
||
)
|
||
return true;
|
||
}
|
||
ao = bo;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
function containsPolygon(coordinates, point) {
|
||
return !!polygonContains(coordinates.map(ringRadians), pointRadians(point));
|
||
}
|
||
|
||
function ringRadians(ring) {
|
||
return ring = ring.map(pointRadians), ring.pop(), ring;
|
||
}
|
||
|
||
function pointRadians(point) {
|
||
return [point[0] * radians, point[1] * radians];
|
||
}
|
||
|
||
function contains(object, point) {
|
||
return (object && containsObjectType.hasOwnProperty(object.type)
|
||
? containsObjectType[object.type]
|
||
: containsGeometry)(object, point);
|
||
}
|
||
|
||
function graticuleX(y0, y1, dy) {
|
||
var y = d3Array.range(y0, y1 - epsilon, dy).concat(y1);
|
||
return function(x) { return y.map(function(y) { return [x, y]; }); };
|
||
}
|
||
|
||
function graticuleY(x0, x1, dx) {
|
||
var x = d3Array.range(x0, x1 - epsilon, dx).concat(x1);
|
||
return function(y) { return x.map(function(x) { return [x, y]; }); };
|
||
}
|
||
|
||
function graticule() {
|
||
var x1, x0, X1, X0,
|
||
y1, y0, Y1, Y0,
|
||
dx = 10, dy = dx, DX = 90, DY = 360,
|
||
x, y, X, Y,
|
||
precision = 2.5;
|
||
|
||
function graticule() {
|
||
return {type: "MultiLineString", coordinates: lines()};
|
||
}
|
||
|
||
function lines() {
|
||
return d3Array.range(ceil(X0 / DX) * DX, X1, DX).map(X)
|
||
.concat(d3Array.range(ceil(Y0 / DY) * DY, Y1, DY).map(Y))
|
||
.concat(d3Array.range(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs(x % DX) > epsilon; }).map(x))
|
||
.concat(d3Array.range(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs(y % DY) > epsilon; }).map(y));
|
||
}
|
||
|
||
graticule.lines = function() {
|
||
return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; });
|
||
};
|
||
|
||
graticule.outline = function() {
|
||
return {
|
||
type: "Polygon",
|
||
coordinates: [
|
||
X(X0).concat(
|
||
Y(Y1).slice(1),
|
||
X(X1).reverse().slice(1),
|
||
Y(Y0).reverse().slice(1))
|
||
]
|
||
};
|
||
};
|
||
|
||
graticule.extent = function(_) {
|
||
if (!arguments.length) return graticule.extentMinor();
|
||
return graticule.extentMajor(_).extentMinor(_);
|
||
};
|
||
|
||
graticule.extentMajor = function(_) {
|
||
if (!arguments.length) return [[X0, Y0], [X1, Y1]];
|
||
X0 = +_[0][0], X1 = +_[1][0];
|
||
Y0 = +_[0][1], Y1 = +_[1][1];
|
||
if (X0 > X1) _ = X0, X0 = X1, X1 = _;
|
||
if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _;
|
||
return graticule.precision(precision);
|
||
};
|
||
|
||
graticule.extentMinor = function(_) {
|
||
if (!arguments.length) return [[x0, y0], [x1, y1]];
|
||
x0 = +_[0][0], x1 = +_[1][0];
|
||
y0 = +_[0][1], y1 = +_[1][1];
|
||
if (x0 > x1) _ = x0, x0 = x1, x1 = _;
|
||
if (y0 > y1) _ = y0, y0 = y1, y1 = _;
|
||
return graticule.precision(precision);
|
||
};
|
||
|
||
graticule.step = function(_) {
|
||
if (!arguments.length) return graticule.stepMinor();
|
||
return graticule.stepMajor(_).stepMinor(_);
|
||
};
|
||
|
||
graticule.stepMajor = function(_) {
|
||
if (!arguments.length) return [DX, DY];
|
||
DX = +_[0], DY = +_[1];
|
||
return graticule;
|
||
};
|
||
|
||
graticule.stepMinor = function(_) {
|
||
if (!arguments.length) return [dx, dy];
|
||
dx = +_[0], dy = +_[1];
|
||
return graticule;
|
||
};
|
||
|
||
graticule.precision = function(_) {
|
||
if (!arguments.length) return precision;
|
||
precision = +_;
|
||
x = graticuleX(y0, y1, 90);
|
||
y = graticuleY(x0, x1, precision);
|
||
X = graticuleX(Y0, Y1, 90);
|
||
Y = graticuleY(X0, X1, precision);
|
||
return graticule;
|
||
};
|
||
|
||
return graticule
|
||
.extentMajor([[-180, -90 + epsilon], [180, 90 - epsilon]])
|
||
.extentMinor([[-180, -80 - epsilon], [180, 80 + epsilon]]);
|
||
}
|
||
|
||
function graticule10() {
|
||
return graticule()();
|
||
}
|
||
|
||
function interpolate(a, b) {
|
||
var x0 = a[0] * radians,
|
||
y0 = a[1] * radians,
|
||
x1 = b[0] * radians,
|
||
y1 = b[1] * radians,
|
||
cy0 = cos(y0),
|
||
sy0 = sin(y0),
|
||
cy1 = cos(y1),
|
||
sy1 = sin(y1),
|
||
kx0 = cy0 * cos(x0),
|
||
ky0 = cy0 * sin(x0),
|
||
kx1 = cy1 * cos(x1),
|
||
ky1 = cy1 * sin(x1),
|
||
d = 2 * asin(sqrt(haversin(y1 - y0) + cy0 * cy1 * haversin(x1 - x0))),
|
||
k = sin(d);
|
||
|
||
var interpolate = d ? function(t) {
|
||
var B = sin(t *= d) / k,
|
||
A = sin(d - t) / k,
|
||
x = A * kx0 + B * kx1,
|
||
y = A * ky0 + B * ky1,
|
||
z = A * sy0 + B * sy1;
|
||
return [
|
||
atan2(y, x) * degrees,
|
||
atan2(z, sqrt(x * x + y * y)) * degrees
|
||
];
|
||
} : function() {
|
||
return [x0 * degrees, y0 * degrees];
|
||
};
|
||
|
||
interpolate.distance = d;
|
||
|
||
return interpolate;
|
||
}
|
||
|
||
var identity$1 = x => x;
|
||
|
||
var areaSum = new d3Array.Adder(),
|
||
areaRingSum = new d3Array.Adder(),
|
||
x00$2,
|
||
y00$2,
|
||
x0$3,
|
||
y0$3;
|
||
|
||
var areaStream = {
|
||
point: noop,
|
||
lineStart: noop,
|
||
lineEnd: noop,
|
||
polygonStart: function() {
|
||
areaStream.lineStart = areaRingStart;
|
||
areaStream.lineEnd = areaRingEnd;
|
||
},
|
||
polygonEnd: function() {
|
||
areaStream.lineStart = areaStream.lineEnd = areaStream.point = noop;
|
||
areaSum.add(abs(areaRingSum));
|
||
areaRingSum = new d3Array.Adder();
|
||
},
|
||
result: function() {
|
||
var area = areaSum / 2;
|
||
areaSum = new d3Array.Adder();
|
||
return area;
|
||
}
|
||
};
|
||
|
||
function areaRingStart() {
|
||
areaStream.point = areaPointFirst;
|
||
}
|
||
|
||
function areaPointFirst(x, y) {
|
||
areaStream.point = areaPoint;
|
||
x00$2 = x0$3 = x, y00$2 = y0$3 = y;
|
||
}
|
||
|
||
function areaPoint(x, y) {
|
||
areaRingSum.add(y0$3 * x - x0$3 * y);
|
||
x0$3 = x, y0$3 = y;
|
||
}
|
||
|
||
function areaRingEnd() {
|
||
areaPoint(x00$2, y00$2);
|
||
}
|
||
|
||
var x0$2 = Infinity,
|
||
y0$2 = x0$2,
|
||
x1 = -x0$2,
|
||
y1 = x1;
|
||
|
||
var boundsStream = {
|
||
point: boundsPoint,
|
||
lineStart: noop,
|
||
lineEnd: noop,
|
||
polygonStart: noop,
|
||
polygonEnd: noop,
|
||
result: function() {
|
||
var bounds = [[x0$2, y0$2], [x1, y1]];
|
||
x1 = y1 = -(y0$2 = x0$2 = Infinity);
|
||
return bounds;
|
||
}
|
||
};
|
||
|
||
function boundsPoint(x, y) {
|
||
if (x < x0$2) x0$2 = x;
|
||
if (x > x1) x1 = x;
|
||
if (y < y0$2) y0$2 = y;
|
||
if (y > y1) y1 = y;
|
||
}
|
||
|
||
// TODO Enforce positive area for exterior, negative area for interior?
|
||
|
||
var X0 = 0,
|
||
Y0 = 0,
|
||
Z0 = 0,
|
||
X1 = 0,
|
||
Y1 = 0,
|
||
Z1 = 0,
|
||
X2 = 0,
|
||
Y2 = 0,
|
||
Z2 = 0,
|
||
x00$1,
|
||
y00$1,
|
||
x0$1,
|
||
y0$1;
|
||
|
||
var centroidStream = {
|
||
point: centroidPoint,
|
||
lineStart: centroidLineStart,
|
||
lineEnd: centroidLineEnd,
|
||
polygonStart: function() {
|
||
centroidStream.lineStart = centroidRingStart;
|
||
centroidStream.lineEnd = centroidRingEnd;
|
||
},
|
||
polygonEnd: function() {
|
||
centroidStream.point = centroidPoint;
|
||
centroidStream.lineStart = centroidLineStart;
|
||
centroidStream.lineEnd = centroidLineEnd;
|
||
},
|
||
result: function() {
|
||
var centroid = Z2 ? [X2 / Z2, Y2 / Z2]
|
||
: Z1 ? [X1 / Z1, Y1 / Z1]
|
||
: Z0 ? [X0 / Z0, Y0 / Z0]
|
||
: [NaN, NaN];
|
||
X0 = Y0 = Z0 =
|
||
X1 = Y1 = Z1 =
|
||
X2 = Y2 = Z2 = 0;
|
||
return centroid;
|
||
}
|
||
};
|
||
|
||
function centroidPoint(x, y) {
|
||
X0 += x;
|
||
Y0 += y;
|
||
++Z0;
|
||
}
|
||
|
||
function centroidLineStart() {
|
||
centroidStream.point = centroidPointFirstLine;
|
||
}
|
||
|
||
function centroidPointFirstLine(x, y) {
|
||
centroidStream.point = centroidPointLine;
|
||
centroidPoint(x0$1 = x, y0$1 = y);
|
||
}
|
||
|
||
function centroidPointLine(x, y) {
|
||
var dx = x - x0$1, dy = y - y0$1, z = sqrt(dx * dx + dy * dy);
|
||
X1 += z * (x0$1 + x) / 2;
|
||
Y1 += z * (y0$1 + y) / 2;
|
||
Z1 += z;
|
||
centroidPoint(x0$1 = x, y0$1 = y);
|
||
}
|
||
|
||
function centroidLineEnd() {
|
||
centroidStream.point = centroidPoint;
|
||
}
|
||
|
||
function centroidRingStart() {
|
||
centroidStream.point = centroidPointFirstRing;
|
||
}
|
||
|
||
function centroidRingEnd() {
|
||
centroidPointRing(x00$1, y00$1);
|
||
}
|
||
|
||
function centroidPointFirstRing(x, y) {
|
||
centroidStream.point = centroidPointRing;
|
||
centroidPoint(x00$1 = x0$1 = x, y00$1 = y0$1 = y);
|
||
}
|
||
|
||
function centroidPointRing(x, y) {
|
||
var dx = x - x0$1,
|
||
dy = y - y0$1,
|
||
z = sqrt(dx * dx + dy * dy);
|
||
|
||
X1 += z * (x0$1 + x) / 2;
|
||
Y1 += z * (y0$1 + y) / 2;
|
||
Z1 += z;
|
||
|
||
z = y0$1 * x - x0$1 * y;
|
||
X2 += z * (x0$1 + x);
|
||
Y2 += z * (y0$1 + y);
|
||
Z2 += z * 3;
|
||
centroidPoint(x0$1 = x, y0$1 = y);
|
||
}
|
||
|
||
function PathContext(context) {
|
||
this._context = context;
|
||
}
|
||
|
||
PathContext.prototype = {
|
||
_radius: 4.5,
|
||
pointRadius: function(_) {
|
||
return this._radius = _, this;
|
||
},
|
||
polygonStart: function() {
|
||
this._line = 0;
|
||
},
|
||
polygonEnd: function() {
|
||
this._line = NaN;
|
||
},
|
||
lineStart: function() {
|
||
this._point = 0;
|
||
},
|
||
lineEnd: function() {
|
||
if (this._line === 0) this._context.closePath();
|
||
this._point = NaN;
|
||
},
|
||
point: function(x, y) {
|
||
switch (this._point) {
|
||
case 0: {
|
||
this._context.moveTo(x, y);
|
||
this._point = 1;
|
||
break;
|
||
}
|
||
case 1: {
|
||
this._context.lineTo(x, y);
|
||
break;
|
||
}
|
||
default: {
|
||
this._context.moveTo(x + this._radius, y);
|
||
this._context.arc(x, y, this._radius, 0, tau);
|
||
break;
|
||
}
|
||
}
|
||
},
|
||
result: noop
|
||
};
|
||
|
||
var lengthSum = new d3Array.Adder(),
|
||
lengthRing,
|
||
x00,
|
||
y00,
|
||
x0,
|
||
y0;
|
||
|
||
var lengthStream = {
|
||
point: noop,
|
||
lineStart: function() {
|
||
lengthStream.point = lengthPointFirst;
|
||
},
|
||
lineEnd: function() {
|
||
if (lengthRing) lengthPoint(x00, y00);
|
||
lengthStream.point = noop;
|
||
},
|
||
polygonStart: function() {
|
||
lengthRing = true;
|
||
},
|
||
polygonEnd: function() {
|
||
lengthRing = null;
|
||
},
|
||
result: function() {
|
||
var length = +lengthSum;
|
||
lengthSum = new d3Array.Adder();
|
||
return length;
|
||
}
|
||
};
|
||
|
||
function lengthPointFirst(x, y) {
|
||
lengthStream.point = lengthPoint;
|
||
x00 = x0 = x, y00 = y0 = y;
|
||
}
|
||
|
||
function lengthPoint(x, y) {
|
||
x0 -= x, y0 -= y;
|
||
lengthSum.add(sqrt(x0 * x0 + y0 * y0));
|
||
x0 = x, y0 = y;
|
||
}
|
||
|
||
// Simple caching for constant-radius points.
|
||
let cacheDigits, cacheAppend, cacheRadius, cacheCircle;
|
||
|
||
class PathString {
|
||
constructor(digits) {
|
||
this._append = digits == null ? append : appendRound(digits);
|
||
this._radius = 4.5;
|
||
this._ = "";
|
||
}
|
||
pointRadius(_) {
|
||
this._radius = +_;
|
||
return this;
|
||
}
|
||
polygonStart() {
|
||
this._line = 0;
|
||
}
|
||
polygonEnd() {
|
||
this._line = NaN;
|
||
}
|
||
lineStart() {
|
||
this._point = 0;
|
||
}
|
||
lineEnd() {
|
||
if (this._line === 0) this._ += "Z";
|
||
this._point = NaN;
|
||
}
|
||
point(x, y) {
|
||
switch (this._point) {
|
||
case 0: {
|
||
this._append`M${x},${y}`;
|
||
this._point = 1;
|
||
break;
|
||
}
|
||
case 1: {
|
||
this._append`L${x},${y}`;
|
||
break;
|
||
}
|
||
default: {
|
||
this._append`M${x},${y}`;
|
||
if (this._radius !== cacheRadius || this._append !== cacheAppend) {
|
||
const r = this._radius;
|
||
const s = this._;
|
||
this._ = ""; // stash the old string so we can cache the circle path fragment
|
||
this._append`m0,${r}a${r},${r} 0 1,1 0,${-2 * r}a${r},${r} 0 1,1 0,${2 * r}z`;
|
||
cacheRadius = r;
|
||
cacheAppend = this._append;
|
||
cacheCircle = this._;
|
||
this._ = s;
|
||
}
|
||
this._ += cacheCircle;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
result() {
|
||
const result = this._;
|
||
this._ = "";
|
||
return result.length ? result : null;
|
||
}
|
||
}
|
||
|
||
function append(strings) {
|
||
let i = 1;
|
||
this._ += strings[0];
|
||
for (const j = strings.length; i < j; ++i) {
|
||
this._ += arguments[i] + strings[i];
|
||
}
|
||
}
|
||
|
||
function appendRound(digits) {
|
||
const d = Math.floor(digits);
|
||
if (!(d >= 0)) throw new RangeError(`invalid digits: ${digits}`);
|
||
if (d > 15) return append;
|
||
if (d !== cacheDigits) {
|
||
const k = 10 ** d;
|
||
cacheDigits = d;
|
||
cacheAppend = function append(strings) {
|
||
let i = 1;
|
||
this._ += strings[0];
|
||
for (const j = strings.length; i < j; ++i) {
|
||
this._ += Math.round(arguments[i] * k) / k + strings[i];
|
||
}
|
||
};
|
||
}
|
||
return cacheAppend;
|
||
}
|
||
|
||
function index(projection, context) {
|
||
let digits = 3,
|
||
pointRadius = 4.5,
|
||
projectionStream,
|
||
contextStream;
|
||
|
||
function path(object) {
|
||
if (object) {
|
||
if (typeof pointRadius === "function") contextStream.pointRadius(+pointRadius.apply(this, arguments));
|
||
geoStream(object, projectionStream(contextStream));
|
||
}
|
||
return contextStream.result();
|
||
}
|
||
|
||
path.area = function(object) {
|
||
geoStream(object, projectionStream(areaStream));
|
||
return areaStream.result();
|
||
};
|
||
|
||
path.measure = function(object) {
|
||
geoStream(object, projectionStream(lengthStream));
|
||
return lengthStream.result();
|
||
};
|
||
|
||
path.bounds = function(object) {
|
||
geoStream(object, projectionStream(boundsStream));
|
||
return boundsStream.result();
|
||
};
|
||
|
||
path.centroid = function(object) {
|
||
geoStream(object, projectionStream(centroidStream));
|
||
return centroidStream.result();
|
||
};
|
||
|
||
path.projection = function(_) {
|
||
if (!arguments.length) return projection;
|
||
projectionStream = _ == null ? (projection = null, identity$1) : (projection = _).stream;
|
||
return path;
|
||
};
|
||
|
||
path.context = function(_) {
|
||
if (!arguments.length) return context;
|
||
contextStream = _ == null ? (context = null, new PathString(digits)) : new PathContext(context = _);
|
||
if (typeof pointRadius !== "function") contextStream.pointRadius(pointRadius);
|
||
return path;
|
||
};
|
||
|
||
path.pointRadius = function(_) {
|
||
if (!arguments.length) return pointRadius;
|
||
pointRadius = typeof _ === "function" ? _ : (contextStream.pointRadius(+_), +_);
|
||
return path;
|
||
};
|
||
|
||
path.digits = function(_) {
|
||
if (!arguments.length) return digits;
|
||
if (_ == null) digits = null;
|
||
else {
|
||
const d = Math.floor(_);
|
||
if (!(d >= 0)) throw new RangeError(`invalid digits: ${_}`);
|
||
digits = d;
|
||
}
|
||
if (context === null) contextStream = new PathString(digits);
|
||
return path;
|
||
};
|
||
|
||
return path.projection(projection).digits(digits).context(context);
|
||
}
|
||
|
||
function transform(methods) {
|
||
return {
|
||
stream: transformer(methods)
|
||
};
|
||
}
|
||
|
||
function transformer(methods) {
|
||
return function(stream) {
|
||
var s = new TransformStream;
|
||
for (var key in methods) s[key] = methods[key];
|
||
s.stream = stream;
|
||
return s;
|
||
};
|
||
}
|
||
|
||
function TransformStream() {}
|
||
|
||
TransformStream.prototype = {
|
||
constructor: TransformStream,
|
||
point: function(x, y) { this.stream.point(x, y); },
|
||
sphere: function() { this.stream.sphere(); },
|
||
lineStart: function() { this.stream.lineStart(); },
|
||
lineEnd: function() { this.stream.lineEnd(); },
|
||
polygonStart: function() { this.stream.polygonStart(); },
|
||
polygonEnd: function() { this.stream.polygonEnd(); }
|
||
};
|
||
|
||
function fit(projection, fitBounds, object) {
|
||
var clip = projection.clipExtent && projection.clipExtent();
|
||
projection.scale(150).translate([0, 0]);
|
||
if (clip != null) projection.clipExtent(null);
|
||
geoStream(object, projection.stream(boundsStream));
|
||
fitBounds(boundsStream.result());
|
||
if (clip != null) projection.clipExtent(clip);
|
||
return projection;
|
||
}
|
||
|
||
function fitExtent(projection, extent, object) {
|
||
return fit(projection, function(b) {
|
||
var w = extent[1][0] - extent[0][0],
|
||
h = extent[1][1] - extent[0][1],
|
||
k = Math.min(w / (b[1][0] - b[0][0]), h / (b[1][1] - b[0][1])),
|
||
x = +extent[0][0] + (w - k * (b[1][0] + b[0][0])) / 2,
|
||
y = +extent[0][1] + (h - k * (b[1][1] + b[0][1])) / 2;
|
||
projection.scale(150 * k).translate([x, y]);
|
||
}, object);
|
||
}
|
||
|
||
function fitSize(projection, size, object) {
|
||
return fitExtent(projection, [[0, 0], size], object);
|
||
}
|
||
|
||
function fitWidth(projection, width, object) {
|
||
return fit(projection, function(b) {
|
||
var w = +width,
|
||
k = w / (b[1][0] - b[0][0]),
|
||
x = (w - k * (b[1][0] + b[0][0])) / 2,
|
||
y = -k * b[0][1];
|
||
projection.scale(150 * k).translate([x, y]);
|
||
}, object);
|
||
}
|
||
|
||
function fitHeight(projection, height, object) {
|
||
return fit(projection, function(b) {
|
||
var h = +height,
|
||
k = h / (b[1][1] - b[0][1]),
|
||
x = -k * b[0][0],
|
||
y = (h - k * (b[1][1] + b[0][1])) / 2;
|
||
projection.scale(150 * k).translate([x, y]);
|
||
}, object);
|
||
}
|
||
|
||
var maxDepth = 16, // maximum depth of subdivision
|
||
cosMinDistance = cos(30 * radians); // cos(minimum angular distance)
|
||
|
||
function resample(project, delta2) {
|
||
return +delta2 ? resample$1(project, delta2) : resampleNone(project);
|
||
}
|
||
|
||
function resampleNone(project) {
|
||
return transformer({
|
||
point: function(x, y) {
|
||
x = project(x, y);
|
||
this.stream.point(x[0], x[1]);
|
||
}
|
||
});
|
||
}
|
||
|
||
function resample$1(project, delta2) {
|
||
|
||
function resampleLineTo(x0, y0, lambda0, a0, b0, c0, x1, y1, lambda1, a1, b1, c1, depth, stream) {
|
||
var dx = x1 - x0,
|
||
dy = y1 - y0,
|
||
d2 = dx * dx + dy * dy;
|
||
if (d2 > 4 * delta2 && depth--) {
|
||
var a = a0 + a1,
|
||
b = b0 + b1,
|
||
c = c0 + c1,
|
||
m = sqrt(a * a + b * b + c * c),
|
||
phi2 = asin(c /= m),
|
||
lambda2 = abs(abs(c) - 1) < epsilon || abs(lambda0 - lambda1) < epsilon ? (lambda0 + lambda1) / 2 : atan2(b, a),
|
||
p = project(lambda2, phi2),
|
||
x2 = p[0],
|
||
y2 = p[1],
|
||
dx2 = x2 - x0,
|
||
dy2 = y2 - y0,
|
||
dz = dy * dx2 - dx * dy2;
|
||
if (dz * dz / d2 > delta2 // perpendicular projected distance
|
||
|| abs((dx * dx2 + dy * dy2) / d2 - 0.5) > 0.3 // midpoint close to an end
|
||
|| a0 * a1 + b0 * b1 + c0 * c1 < cosMinDistance) { // angular distance
|
||
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x2, y2, lambda2, a /= m, b /= m, c, depth, stream);
|
||
stream.point(x2, y2);
|
||
resampleLineTo(x2, y2, lambda2, a, b, c, x1, y1, lambda1, a1, b1, c1, depth, stream);
|
||
}
|
||
}
|
||
}
|
||
return function(stream) {
|
||
var lambda00, x00, y00, a00, b00, c00, // first point
|
||
lambda0, x0, y0, a0, b0, c0; // previous point
|
||
|
||
var resampleStream = {
|
||
point: point,
|
||
lineStart: lineStart,
|
||
lineEnd: lineEnd,
|
||
polygonStart: function() { stream.polygonStart(); resampleStream.lineStart = ringStart; },
|
||
polygonEnd: function() { stream.polygonEnd(); resampleStream.lineStart = lineStart; }
|
||
};
|
||
|
||
function point(x, y) {
|
||
x = project(x, y);
|
||
stream.point(x[0], x[1]);
|
||
}
|
||
|
||
function lineStart() {
|
||
x0 = NaN;
|
||
resampleStream.point = linePoint;
|
||
stream.lineStart();
|
||
}
|
||
|
||
function linePoint(lambda, phi) {
|
||
var c = cartesian([lambda, phi]), p = project(lambda, phi);
|
||
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x0 = p[0], y0 = p[1], lambda0 = lambda, a0 = c[0], b0 = c[1], c0 = c[2], maxDepth, stream);
|
||
stream.point(x0, y0);
|
||
}
|
||
|
||
function lineEnd() {
|
||
resampleStream.point = point;
|
||
stream.lineEnd();
|
||
}
|
||
|
||
function ringStart() {
|
||
lineStart();
|
||
resampleStream.point = ringPoint;
|
||
resampleStream.lineEnd = ringEnd;
|
||
}
|
||
|
||
function ringPoint(lambda, phi) {
|
||
linePoint(lambda00 = lambda, phi), x00 = x0, y00 = y0, a00 = a0, b00 = b0, c00 = c0;
|
||
resampleStream.point = linePoint;
|
||
}
|
||
|
||
function ringEnd() {
|
||
resampleLineTo(x0, y0, lambda0, a0, b0, c0, x00, y00, lambda00, a00, b00, c00, maxDepth, stream);
|
||
resampleStream.lineEnd = lineEnd;
|
||
lineEnd();
|
||
}
|
||
|
||
return resampleStream;
|
||
};
|
||
}
|
||
|
||
var transformRadians = transformer({
|
||
point: function(x, y) {
|
||
this.stream.point(x * radians, y * radians);
|
||
}
|
||
});
|
||
|
||
function transformRotate(rotate) {
|
||
return transformer({
|
||
point: function(x, y) {
|
||
var r = rotate(x, y);
|
||
return this.stream.point(r[0], r[1]);
|
||
}
|
||
});
|
||
}
|
||
|
||
function scaleTranslate(k, dx, dy, sx, sy) {
|
||
function transform(x, y) {
|
||
x *= sx; y *= sy;
|
||
return [dx + k * x, dy - k * y];
|
||
}
|
||
transform.invert = function(x, y) {
|
||
return [(x - dx) / k * sx, (dy - y) / k * sy];
|
||
};
|
||
return transform;
|
||
}
|
||
|
||
function scaleTranslateRotate(k, dx, dy, sx, sy, alpha) {
|
||
if (!alpha) return scaleTranslate(k, dx, dy, sx, sy);
|
||
var cosAlpha = cos(alpha),
|
||
sinAlpha = sin(alpha),
|
||
a = cosAlpha * k,
|
||
b = sinAlpha * k,
|
||
ai = cosAlpha / k,
|
||
bi = sinAlpha / k,
|
||
ci = (sinAlpha * dy - cosAlpha * dx) / k,
|
||
fi = (sinAlpha * dx + cosAlpha * dy) / k;
|
||
function transform(x, y) {
|
||
x *= sx; y *= sy;
|
||
return [a * x - b * y + dx, dy - b * x - a * y];
|
||
}
|
||
transform.invert = function(x, y) {
|
||
return [sx * (ai * x - bi * y + ci), sy * (fi - bi * x - ai * y)];
|
||
};
|
||
return transform;
|
||
}
|
||
|
||
function projection(project) {
|
||
return projectionMutator(function() { return project; })();
|
||
}
|
||
|
||
function projectionMutator(projectAt) {
|
||
var project,
|
||
k = 150, // scale
|
||
x = 480, y = 250, // translate
|
||
lambda = 0, phi = 0, // center
|
||
deltaLambda = 0, deltaPhi = 0, deltaGamma = 0, rotate, // pre-rotate
|
||
alpha = 0, // post-rotate angle
|
||
sx = 1, // reflectX
|
||
sy = 1, // reflectX
|
||
theta = null, preclip = clipAntimeridian, // pre-clip angle
|
||
x0 = null, y0, x1, y1, postclip = identity$1, // post-clip extent
|
||
delta2 = 0.5, // precision
|
||
projectResample,
|
||
projectTransform,
|
||
projectRotateTransform,
|
||
cache,
|
||
cacheStream;
|
||
|
||
function projection(point) {
|
||
return projectRotateTransform(point[0] * radians, point[1] * radians);
|
||
}
|
||
|
||
function invert(point) {
|
||
point = projectRotateTransform.invert(point[0], point[1]);
|
||
return point && [point[0] * degrees, point[1] * degrees];
|
||
}
|
||
|
||
projection.stream = function(stream) {
|
||
return cache && cacheStream === stream ? cache : cache = transformRadians(transformRotate(rotate)(preclip(projectResample(postclip(cacheStream = stream)))));
|
||
};
|
||
|
||
projection.preclip = function(_) {
|
||
return arguments.length ? (preclip = _, theta = undefined, reset()) : preclip;
|
||
};
|
||
|
||
projection.postclip = function(_) {
|
||
return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;
|
||
};
|
||
|
||
projection.clipAngle = function(_) {
|
||
return arguments.length ? (preclip = +_ ? clipCircle(theta = _ * radians) : (theta = null, clipAntimeridian), reset()) : theta * degrees;
|
||
};
|
||
|
||
projection.clipExtent = function(_) {
|
||
return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity$1) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
|
||
};
|
||
|
||
projection.scale = function(_) {
|
||
return arguments.length ? (k = +_, recenter()) : k;
|
||
};
|
||
|
||
projection.translate = function(_) {
|
||
return arguments.length ? (x = +_[0], y = +_[1], recenter()) : [x, y];
|
||
};
|
||
|
||
projection.center = function(_) {
|
||
return arguments.length ? (lambda = _[0] % 360 * radians, phi = _[1] % 360 * radians, recenter()) : [lambda * degrees, phi * degrees];
|
||
};
|
||
|
||
projection.rotate = function(_) {
|
||
return arguments.length ? (deltaLambda = _[0] % 360 * radians, deltaPhi = _[1] % 360 * radians, deltaGamma = _.length > 2 ? _[2] % 360 * radians : 0, recenter()) : [deltaLambda * degrees, deltaPhi * degrees, deltaGamma * degrees];
|
||
};
|
||
|
||
projection.angle = function(_) {
|
||
return arguments.length ? (alpha = _ % 360 * radians, recenter()) : alpha * degrees;
|
||
};
|
||
|
||
projection.reflectX = function(_) {
|
||
return arguments.length ? (sx = _ ? -1 : 1, recenter()) : sx < 0;
|
||
};
|
||
|
||
projection.reflectY = function(_) {
|
||
return arguments.length ? (sy = _ ? -1 : 1, recenter()) : sy < 0;
|
||
};
|
||
|
||
projection.precision = function(_) {
|
||
return arguments.length ? (projectResample = resample(projectTransform, delta2 = _ * _), reset()) : sqrt(delta2);
|
||
};
|
||
|
||
projection.fitExtent = function(extent, object) {
|
||
return fitExtent(projection, extent, object);
|
||
};
|
||
|
||
projection.fitSize = function(size, object) {
|
||
return fitSize(projection, size, object);
|
||
};
|
||
|
||
projection.fitWidth = function(width, object) {
|
||
return fitWidth(projection, width, object);
|
||
};
|
||
|
||
projection.fitHeight = function(height, object) {
|
||
return fitHeight(projection, height, object);
|
||
};
|
||
|
||
function recenter() {
|
||
var center = scaleTranslateRotate(k, 0, 0, sx, sy, alpha).apply(null, project(lambda, phi)),
|
||
transform = scaleTranslateRotate(k, x - center[0], y - center[1], sx, sy, alpha);
|
||
rotate = rotateRadians(deltaLambda, deltaPhi, deltaGamma);
|
||
projectTransform = compose(project, transform);
|
||
projectRotateTransform = compose(rotate, projectTransform);
|
||
projectResample = resample(projectTransform, delta2);
|
||
return reset();
|
||
}
|
||
|
||
function reset() {
|
||
cache = cacheStream = null;
|
||
return projection;
|
||
}
|
||
|
||
return function() {
|
||
project = projectAt.apply(this, arguments);
|
||
projection.invert = project.invert && invert;
|
||
return recenter();
|
||
};
|
||
}
|
||
|
||
function conicProjection(projectAt) {
|
||
var phi0 = 0,
|
||
phi1 = pi / 3,
|
||
m = projectionMutator(projectAt),
|
||
p = m(phi0, phi1);
|
||
|
||
p.parallels = function(_) {
|
||
return arguments.length ? m(phi0 = _[0] * radians, phi1 = _[1] * radians) : [phi0 * degrees, phi1 * degrees];
|
||
};
|
||
|
||
return p;
|
||
}
|
||
|
||
function cylindricalEqualAreaRaw(phi0) {
|
||
var cosPhi0 = cos(phi0);
|
||
|
||
function forward(lambda, phi) {
|
||
return [lambda * cosPhi0, sin(phi) / cosPhi0];
|
||
}
|
||
|
||
forward.invert = function(x, y) {
|
||
return [x / cosPhi0, asin(y * cosPhi0)];
|
||
};
|
||
|
||
return forward;
|
||
}
|
||
|
||
function conicEqualAreaRaw(y0, y1) {
|
||
var sy0 = sin(y0), n = (sy0 + sin(y1)) / 2;
|
||
|
||
// Are the parallels symmetrical around the Equator?
|
||
if (abs(n) < epsilon) return cylindricalEqualAreaRaw(y0);
|
||
|
||
var c = 1 + sy0 * (2 * n - sy0), r0 = sqrt(c) / n;
|
||
|
||
function project(x, y) {
|
||
var r = sqrt(c - 2 * n * sin(y)) / n;
|
||
return [r * sin(x *= n), r0 - r * cos(x)];
|
||
}
|
||
|
||
project.invert = function(x, y) {
|
||
var r0y = r0 - y,
|
||
l = atan2(x, abs(r0y)) * sign(r0y);
|
||
if (r0y * n < 0)
|
||
l -= pi * sign(x) * sign(r0y);
|
||
return [l / n, asin((c - (x * x + r0y * r0y) * n * n) / (2 * n))];
|
||
};
|
||
|
||
return project;
|
||
}
|
||
|
||
function conicEqualArea() {
|
||
return conicProjection(conicEqualAreaRaw)
|
||
.scale(155.424)
|
||
.center([0, 33.6442]);
|
||
}
|
||
|
||
function albers() {
|
||
return conicEqualArea()
|
||
.parallels([29.5, 45.5])
|
||
.scale(1070)
|
||
.translate([480, 250])
|
||
.rotate([96, 0])
|
||
.center([-0.6, 38.7]);
|
||
}
|
||
|
||
// The projections must have mutually exclusive clip regions on the sphere,
|
||
// as this will avoid emitting interleaving lines and polygons.
|
||
function multiplex(streams) {
|
||
var n = streams.length;
|
||
return {
|
||
point: function(x, y) { var i = -1; while (++i < n) streams[i].point(x, y); },
|
||
sphere: function() { var i = -1; while (++i < n) streams[i].sphere(); },
|
||
lineStart: function() { var i = -1; while (++i < n) streams[i].lineStart(); },
|
||
lineEnd: function() { var i = -1; while (++i < n) streams[i].lineEnd(); },
|
||
polygonStart: function() { var i = -1; while (++i < n) streams[i].polygonStart(); },
|
||
polygonEnd: function() { var i = -1; while (++i < n) streams[i].polygonEnd(); }
|
||
};
|
||
}
|
||
|
||
// A composite projection for the United States, configured by default for
|
||
// 960×500. The projection also works quite well at 960×600 if you change the
|
||
// scale to 1285 and adjust the translate accordingly. The set of standard
|
||
// parallels for each region comes from USGS, which is published here:
|
||
// http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers
|
||
function albersUsa() {
|
||
var cache,
|
||
cacheStream,
|
||
lower48 = albers(), lower48Point,
|
||
alaska = conicEqualArea().rotate([154, 0]).center([-2, 58.5]).parallels([55, 65]), alaskaPoint, // EPSG:3338
|
||
hawaii = conicEqualArea().rotate([157, 0]).center([-3, 19.9]).parallels([8, 18]), hawaiiPoint, // ESRI:102007
|
||
point, pointStream = {point: function(x, y) { point = [x, y]; }};
|
||
|
||
function albersUsa(coordinates) {
|
||
var x = coordinates[0], y = coordinates[1];
|
||
return point = null,
|
||
(lower48Point.point(x, y), point)
|
||
|| (alaskaPoint.point(x, y), point)
|
||
|| (hawaiiPoint.point(x, y), point);
|
||
}
|
||
|
||
albersUsa.invert = function(coordinates) {
|
||
var k = lower48.scale(),
|
||
t = lower48.translate(),
|
||
x = (coordinates[0] - t[0]) / k,
|
||
y = (coordinates[1] - t[1]) / k;
|
||
return (y >= 0.120 && y < 0.234 && x >= -0.425 && x < -0.214 ? alaska
|
||
: y >= 0.166 && y < 0.234 && x >= -0.214 && x < -0.115 ? hawaii
|
||
: lower48).invert(coordinates);
|
||
};
|
||
|
||
albersUsa.stream = function(stream) {
|
||
return cache && cacheStream === stream ? cache : cache = multiplex([lower48.stream(cacheStream = stream), alaska.stream(stream), hawaii.stream(stream)]);
|
||
};
|
||
|
||
albersUsa.precision = function(_) {
|
||
if (!arguments.length) return lower48.precision();
|
||
lower48.precision(_), alaska.precision(_), hawaii.precision(_);
|
||
return reset();
|
||
};
|
||
|
||
albersUsa.scale = function(_) {
|
||
if (!arguments.length) return lower48.scale();
|
||
lower48.scale(_), alaska.scale(_ * 0.35), hawaii.scale(_);
|
||
return albersUsa.translate(lower48.translate());
|
||
};
|
||
|
||
albersUsa.translate = function(_) {
|
||
if (!arguments.length) return lower48.translate();
|
||
var k = lower48.scale(), x = +_[0], y = +_[1];
|
||
|
||
lower48Point = lower48
|
||
.translate(_)
|
||
.clipExtent([[x - 0.455 * k, y - 0.238 * k], [x + 0.455 * k, y + 0.238 * k]])
|
||
.stream(pointStream);
|
||
|
||
alaskaPoint = alaska
|
||
.translate([x - 0.307 * k, y + 0.201 * k])
|
||
.clipExtent([[x - 0.425 * k + epsilon, y + 0.120 * k + epsilon], [x - 0.214 * k - epsilon, y + 0.234 * k - epsilon]])
|
||
.stream(pointStream);
|
||
|
||
hawaiiPoint = hawaii
|
||
.translate([x - 0.205 * k, y + 0.212 * k])
|
||
.clipExtent([[x - 0.214 * k + epsilon, y + 0.166 * k + epsilon], [x - 0.115 * k - epsilon, y + 0.234 * k - epsilon]])
|
||
.stream(pointStream);
|
||
|
||
return reset();
|
||
};
|
||
|
||
albersUsa.fitExtent = function(extent, object) {
|
||
return fitExtent(albersUsa, extent, object);
|
||
};
|
||
|
||
albersUsa.fitSize = function(size, object) {
|
||
return fitSize(albersUsa, size, object);
|
||
};
|
||
|
||
albersUsa.fitWidth = function(width, object) {
|
||
return fitWidth(albersUsa, width, object);
|
||
};
|
||
|
||
albersUsa.fitHeight = function(height, object) {
|
||
return fitHeight(albersUsa, height, object);
|
||
};
|
||
|
||
function reset() {
|
||
cache = cacheStream = null;
|
||
return albersUsa;
|
||
}
|
||
|
||
return albersUsa.scale(1070);
|
||
}
|
||
|
||
function azimuthalRaw(scale) {
|
||
return function(x, y) {
|
||
var cx = cos(x),
|
||
cy = cos(y),
|
||
k = scale(cx * cy);
|
||
if (k === Infinity) return [2, 0];
|
||
return [
|
||
k * cy * sin(x),
|
||
k * sin(y)
|
||
];
|
||
}
|
||
}
|
||
|
||
function azimuthalInvert(angle) {
|
||
return function(x, y) {
|
||
var z = sqrt(x * x + y * y),
|
||
c = angle(z),
|
||
sc = sin(c),
|
||
cc = cos(c);
|
||
return [
|
||
atan2(x * sc, z * cc),
|
||
asin(z && y * sc / z)
|
||
];
|
||
}
|
||
}
|
||
|
||
var azimuthalEqualAreaRaw = azimuthalRaw(function(cxcy) {
|
||
return sqrt(2 / (1 + cxcy));
|
||
});
|
||
|
||
azimuthalEqualAreaRaw.invert = azimuthalInvert(function(z) {
|
||
return 2 * asin(z / 2);
|
||
});
|
||
|
||
function azimuthalEqualArea() {
|
||
return projection(azimuthalEqualAreaRaw)
|
||
.scale(124.75)
|
||
.clipAngle(180 - 1e-3);
|
||
}
|
||
|
||
var azimuthalEquidistantRaw = azimuthalRaw(function(c) {
|
||
return (c = acos(c)) && c / sin(c);
|
||
});
|
||
|
||
azimuthalEquidistantRaw.invert = azimuthalInvert(function(z) {
|
||
return z;
|
||
});
|
||
|
||
function azimuthalEquidistant() {
|
||
return projection(azimuthalEquidistantRaw)
|
||
.scale(79.4188)
|
||
.clipAngle(180 - 1e-3);
|
||
}
|
||
|
||
function mercatorRaw(lambda, phi) {
|
||
return [lambda, log(tan((halfPi + phi) / 2))];
|
||
}
|
||
|
||
mercatorRaw.invert = function(x, y) {
|
||
return [x, 2 * atan(exp(y)) - halfPi];
|
||
};
|
||
|
||
function mercator() {
|
||
return mercatorProjection(mercatorRaw)
|
||
.scale(961 / tau);
|
||
}
|
||
|
||
function mercatorProjection(project) {
|
||
var m = projection(project),
|
||
center = m.center,
|
||
scale = m.scale,
|
||
translate = m.translate,
|
||
clipExtent = m.clipExtent,
|
||
x0 = null, y0, x1, y1; // clip extent
|
||
|
||
m.scale = function(_) {
|
||
return arguments.length ? (scale(_), reclip()) : scale();
|
||
};
|
||
|
||
m.translate = function(_) {
|
||
return arguments.length ? (translate(_), reclip()) : translate();
|
||
};
|
||
|
||
m.center = function(_) {
|
||
return arguments.length ? (center(_), reclip()) : center();
|
||
};
|
||
|
||
m.clipExtent = function(_) {
|
||
return arguments.length ? ((_ == null ? x0 = y0 = x1 = y1 = null : (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1])), reclip()) : x0 == null ? null : [[x0, y0], [x1, y1]];
|
||
};
|
||
|
||
function reclip() {
|
||
var k = pi * scale(),
|
||
t = m(rotation(m.rotate()).invert([0, 0]));
|
||
return clipExtent(x0 == null
|
||
? [[t[0] - k, t[1] - k], [t[0] + k, t[1] + k]] : project === mercatorRaw
|
||
? [[Math.max(t[0] - k, x0), y0], [Math.min(t[0] + k, x1), y1]]
|
||
: [[x0, Math.max(t[1] - k, y0)], [x1, Math.min(t[1] + k, y1)]]);
|
||
}
|
||
|
||
return reclip();
|
||
}
|
||
|
||
function tany(y) {
|
||
return tan((halfPi + y) / 2);
|
||
}
|
||
|
||
function conicConformalRaw(y0, y1) {
|
||
var cy0 = cos(y0),
|
||
n = y0 === y1 ? sin(y0) : log(cy0 / cos(y1)) / log(tany(y1) / tany(y0)),
|
||
f = cy0 * pow(tany(y0), n) / n;
|
||
|
||
if (!n) return mercatorRaw;
|
||
|
||
function project(x, y) {
|
||
if (f > 0) { if (y < -halfPi + epsilon) y = -halfPi + epsilon; }
|
||
else { if (y > halfPi - epsilon) y = halfPi - epsilon; }
|
||
var r = f / pow(tany(y), n);
|
||
return [r * sin(n * x), f - r * cos(n * x)];
|
||
}
|
||
|
||
project.invert = function(x, y) {
|
||
var fy = f - y, r = sign(n) * sqrt(x * x + fy * fy),
|
||
l = atan2(x, abs(fy)) * sign(fy);
|
||
if (fy * n < 0)
|
||
l -= pi * sign(x) * sign(fy);
|
||
return [l / n, 2 * atan(pow(f / r, 1 / n)) - halfPi];
|
||
};
|
||
|
||
return project;
|
||
}
|
||
|
||
function conicConformal() {
|
||
return conicProjection(conicConformalRaw)
|
||
.scale(109.5)
|
||
.parallels([30, 30]);
|
||
}
|
||
|
||
function equirectangularRaw(lambda, phi) {
|
||
return [lambda, phi];
|
||
}
|
||
|
||
equirectangularRaw.invert = equirectangularRaw;
|
||
|
||
function equirectangular() {
|
||
return projection(equirectangularRaw)
|
||
.scale(152.63);
|
||
}
|
||
|
||
function conicEquidistantRaw(y0, y1) {
|
||
var cy0 = cos(y0),
|
||
n = y0 === y1 ? sin(y0) : (cy0 - cos(y1)) / (y1 - y0),
|
||
g = cy0 / n + y0;
|
||
|
||
if (abs(n) < epsilon) return equirectangularRaw;
|
||
|
||
function project(x, y) {
|
||
var gy = g - y, nx = n * x;
|
||
return [gy * sin(nx), g - gy * cos(nx)];
|
||
}
|
||
|
||
project.invert = function(x, y) {
|
||
var gy = g - y,
|
||
l = atan2(x, abs(gy)) * sign(gy);
|
||
if (gy * n < 0)
|
||
l -= pi * sign(x) * sign(gy);
|
||
return [l / n, g - sign(n) * sqrt(x * x + gy * gy)];
|
||
};
|
||
|
||
return project;
|
||
}
|
||
|
||
function conicEquidistant() {
|
||
return conicProjection(conicEquidistantRaw)
|
||
.scale(131.154)
|
||
.center([0, 13.9389]);
|
||
}
|
||
|
||
var A1 = 1.340264,
|
||
A2 = -0.081106,
|
||
A3 = 0.000893,
|
||
A4 = 0.003796,
|
||
M = sqrt(3) / 2,
|
||
iterations = 12;
|
||
|
||
function equalEarthRaw(lambda, phi) {
|
||
var l = asin(M * sin(phi)), l2 = l * l, l6 = l2 * l2 * l2;
|
||
return [
|
||
lambda * cos(l) / (M * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2))),
|
||
l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2))
|
||
];
|
||
}
|
||
|
||
equalEarthRaw.invert = function(x, y) {
|
||
var l = y, l2 = l * l, l6 = l2 * l2 * l2;
|
||
for (var i = 0, delta, fy, fpy; i < iterations; ++i) {
|
||
fy = l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2)) - y;
|
||
fpy = A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2);
|
||
l -= delta = fy / fpy, l2 = l * l, l6 = l2 * l2 * l2;
|
||
if (abs(delta) < epsilon2) break;
|
||
}
|
||
return [
|
||
M * x * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2)) / cos(l),
|
||
asin(sin(l) / M)
|
||
];
|
||
};
|
||
|
||
function equalEarth() {
|
||
return projection(equalEarthRaw)
|
||
.scale(177.158);
|
||
}
|
||
|
||
function gnomonicRaw(x, y) {
|
||
var cy = cos(y), k = cos(x) * cy;
|
||
return [cy * sin(x) / k, sin(y) / k];
|
||
}
|
||
|
||
gnomonicRaw.invert = azimuthalInvert(atan);
|
||
|
||
function gnomonic() {
|
||
return projection(gnomonicRaw)
|
||
.scale(144.049)
|
||
.clipAngle(60);
|
||
}
|
||
|
||
function identity() {
|
||
var k = 1, tx = 0, ty = 0, sx = 1, sy = 1, // scale, translate and reflect
|
||
alpha = 0, ca, sa, // angle
|
||
x0 = null, y0, x1, y1, // clip extent
|
||
kx = 1, ky = 1,
|
||
transform = transformer({
|
||
point: function(x, y) {
|
||
var p = projection([x, y]);
|
||
this.stream.point(p[0], p[1]);
|
||
}
|
||
}),
|
||
postclip = identity$1,
|
||
cache,
|
||
cacheStream;
|
||
|
||
function reset() {
|
||
kx = k * sx;
|
||
ky = k * sy;
|
||
cache = cacheStream = null;
|
||
return projection;
|
||
}
|
||
|
||
function projection (p) {
|
||
var x = p[0] * kx, y = p[1] * ky;
|
||
if (alpha) {
|
||
var t = y * ca - x * sa;
|
||
x = x * ca + y * sa;
|
||
y = t;
|
||
}
|
||
return [x + tx, y + ty];
|
||
}
|
||
projection.invert = function(p) {
|
||
var x = p[0] - tx, y = p[1] - ty;
|
||
if (alpha) {
|
||
var t = y * ca + x * sa;
|
||
x = x * ca - y * sa;
|
||
y = t;
|
||
}
|
||
return [x / kx, y / ky];
|
||
};
|
||
projection.stream = function(stream) {
|
||
return cache && cacheStream === stream ? cache : cache = transform(postclip(cacheStream = stream));
|
||
};
|
||
projection.postclip = function(_) {
|
||
return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;
|
||
};
|
||
projection.clipExtent = function(_) {
|
||
return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity$1) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
|
||
};
|
||
projection.scale = function(_) {
|
||
return arguments.length ? (k = +_, reset()) : k;
|
||
};
|
||
projection.translate = function(_) {
|
||
return arguments.length ? (tx = +_[0], ty = +_[1], reset()) : [tx, ty];
|
||
};
|
||
projection.angle = function(_) {
|
||
return arguments.length ? (alpha = _ % 360 * radians, sa = sin(alpha), ca = cos(alpha), reset()) : alpha * degrees;
|
||
};
|
||
projection.reflectX = function(_) {
|
||
return arguments.length ? (sx = _ ? -1 : 1, reset()) : sx < 0;
|
||
};
|
||
projection.reflectY = function(_) {
|
||
return arguments.length ? (sy = _ ? -1 : 1, reset()) : sy < 0;
|
||
};
|
||
projection.fitExtent = function(extent, object) {
|
||
return fitExtent(projection, extent, object);
|
||
};
|
||
projection.fitSize = function(size, object) {
|
||
return fitSize(projection, size, object);
|
||
};
|
||
projection.fitWidth = function(width, object) {
|
||
return fitWidth(projection, width, object);
|
||
};
|
||
projection.fitHeight = function(height, object) {
|
||
return fitHeight(projection, height, object);
|
||
};
|
||
|
||
return projection;
|
||
}
|
||
|
||
function naturalEarth1Raw(lambda, phi) {
|
||
var phi2 = phi * phi, phi4 = phi2 * phi2;
|
||
return [
|
||
lambda * (0.8707 - 0.131979 * phi2 + phi4 * (-0.013791 + phi4 * (0.003971 * phi2 - 0.001529 * phi4))),
|
||
phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4)))
|
||
];
|
||
}
|
||
|
||
naturalEarth1Raw.invert = function(x, y) {
|
||
var phi = y, i = 25, delta;
|
||
do {
|
||
var phi2 = phi * phi, phi4 = phi2 * phi2;
|
||
phi -= delta = (phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) - y) /
|
||
(1.007226 + phi2 * (0.015085 * 3 + phi4 * (-0.044475 * 7 + 0.028874 * 9 * phi2 - 0.005916 * 11 * phi4)));
|
||
} while (abs(delta) > epsilon && --i > 0);
|
||
return [
|
||
x / (0.8707 + (phi2 = phi * phi) * (-0.131979 + phi2 * (-0.013791 + phi2 * phi2 * phi2 * (0.003971 - 0.001529 * phi2)))),
|
||
phi
|
||
];
|
||
};
|
||
|
||
function naturalEarth1() {
|
||
return projection(naturalEarth1Raw)
|
||
.scale(175.295);
|
||
}
|
||
|
||
function orthographicRaw(x, y) {
|
||
return [cos(y) * sin(x), sin(y)];
|
||
}
|
||
|
||
orthographicRaw.invert = azimuthalInvert(asin);
|
||
|
||
function orthographic() {
|
||
return projection(orthographicRaw)
|
||
.scale(249.5)
|
||
.clipAngle(90 + epsilon);
|
||
}
|
||
|
||
function stereographicRaw(x, y) {
|
||
var cy = cos(y), k = 1 + cos(x) * cy;
|
||
return [cy * sin(x) / k, sin(y) / k];
|
||
}
|
||
|
||
stereographicRaw.invert = azimuthalInvert(function(z) {
|
||
return 2 * atan(z);
|
||
});
|
||
|
||
function stereographic() {
|
||
return projection(stereographicRaw)
|
||
.scale(250)
|
||
.clipAngle(142);
|
||
}
|
||
|
||
function transverseMercatorRaw(lambda, phi) {
|
||
return [log(tan((halfPi + phi) / 2)), -lambda];
|
||
}
|
||
|
||
transverseMercatorRaw.invert = function(x, y) {
|
||
return [-y, 2 * atan(exp(x)) - halfPi];
|
||
};
|
||
|
||
function transverseMercator() {
|
||
var m = mercatorProjection(transverseMercatorRaw),
|
||
center = m.center,
|
||
rotate = m.rotate;
|
||
|
||
m.center = function(_) {
|
||
return arguments.length ? center([-_[1], _[0]]) : (_ = center(), [_[1], -_[0]]);
|
||
};
|
||
|
||
m.rotate = function(_) {
|
||
return arguments.length ? rotate([_[0], _[1], _.length > 2 ? _[2] + 90 : 90]) : (_ = rotate(), [_[0], _[1], _[2] - 90]);
|
||
};
|
||
|
||
return rotate([0, 0, 90])
|
||
.scale(159.155);
|
||
}
|
||
|
||
exports.geoAlbers = albers;
|
||
exports.geoAlbersUsa = albersUsa;
|
||
exports.geoArea = area;
|
||
exports.geoAzimuthalEqualArea = azimuthalEqualArea;
|
||
exports.geoAzimuthalEqualAreaRaw = azimuthalEqualAreaRaw;
|
||
exports.geoAzimuthalEquidistant = azimuthalEquidistant;
|
||
exports.geoAzimuthalEquidistantRaw = azimuthalEquidistantRaw;
|
||
exports.geoBounds = bounds;
|
||
exports.geoCentroid = centroid;
|
||
exports.geoCircle = circle;
|
||
exports.geoClipAntimeridian = clipAntimeridian;
|
||
exports.geoClipCircle = clipCircle;
|
||
exports.geoClipExtent = extent;
|
||
exports.geoClipRectangle = clipRectangle;
|
||
exports.geoConicConformal = conicConformal;
|
||
exports.geoConicConformalRaw = conicConformalRaw;
|
||
exports.geoConicEqualArea = conicEqualArea;
|
||
exports.geoConicEqualAreaRaw = conicEqualAreaRaw;
|
||
exports.geoConicEquidistant = conicEquidistant;
|
||
exports.geoConicEquidistantRaw = conicEquidistantRaw;
|
||
exports.geoContains = contains;
|
||
exports.geoDistance = distance;
|
||
exports.geoEqualEarth = equalEarth;
|
||
exports.geoEqualEarthRaw = equalEarthRaw;
|
||
exports.geoEquirectangular = equirectangular;
|
||
exports.geoEquirectangularRaw = equirectangularRaw;
|
||
exports.geoGnomonic = gnomonic;
|
||
exports.geoGnomonicRaw = gnomonicRaw;
|
||
exports.geoGraticule = graticule;
|
||
exports.geoGraticule10 = graticule10;
|
||
exports.geoIdentity = identity;
|
||
exports.geoInterpolate = interpolate;
|
||
exports.geoLength = length;
|
||
exports.geoMercator = mercator;
|
||
exports.geoMercatorRaw = mercatorRaw;
|
||
exports.geoNaturalEarth1 = naturalEarth1;
|
||
exports.geoNaturalEarth1Raw = naturalEarth1Raw;
|
||
exports.geoOrthographic = orthographic;
|
||
exports.geoOrthographicRaw = orthographicRaw;
|
||
exports.geoPath = index;
|
||
exports.geoProjection = projection;
|
||
exports.geoProjectionMutator = projectionMutator;
|
||
exports.geoRotation = rotation;
|
||
exports.geoStereographic = stereographic;
|
||
exports.geoStereographicRaw = stereographicRaw;
|
||
exports.geoStream = geoStream;
|
||
exports.geoTransform = transform;
|
||
exports.geoTransverseMercator = transverseMercator;
|
||
exports.geoTransverseMercatorRaw = transverseMercatorRaw;
|
||
|
||
}));
|