12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167 |
- // https://d3js.org/d3-geo/ v3.1.1 Copyright 2010-2024 Mike Bostock, 2008-2012 Charles Karney
- (function (global, factory) {
- typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('d3-array')) :
- typeof define === 'function' && define.amd ? define(['exports', 'd3-array'], factory) :
- (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}, global.d3));
- })(this, (function (exports, d3Array) { 'use strict';
-
- var epsilon = 1e-6;
- var epsilon2 = 1e-12;
- var pi = Math.PI;
- var halfPi = pi / 2;
- var quarterPi = pi / 4;
- var tau = pi * 2;
-
- var degrees = 180 / pi;
- var radians = pi / 180;
-
- var abs = Math.abs;
- var atan = Math.atan;
- var atan2 = Math.atan2;
- var cos = Math.cos;
- var ceil = Math.ceil;
- var exp = Math.exp;
- var hypot = Math.hypot;
- var log = Math.log;
- var pow = Math.pow;
- var sin = Math.sin;
- var sign = Math.sign || function(x) { return x > 0 ? 1 : x < 0 ? -1 : 0; };
- var sqrt = Math.sqrt;
- var tan = Math.tan;
-
- function acos(x) {
- return x > 1 ? 0 : x < -1 ? pi : Math.acos(x);
- }
-
- function asin(x) {
- return x > 1 ? halfPi : x < -1 ? -halfPi : Math.asin(x);
- }
-
- function haversin(x) {
- return (x = sin(x / 2)) * x;
- }
-
- function noop() {}
-
- function streamGeometry(geometry, stream) {
- if (geometry && streamGeometryType.hasOwnProperty(geometry.type)) {
- streamGeometryType[geometry.type](geometry, stream);
- }
- }
-
- var streamObjectType = {
- Feature: function(object, stream) {
- streamGeometry(object.geometry, stream);
- },
- FeatureCollection: function(object, stream) {
- var features = object.features, i = -1, n = features.length;
- while (++i < n) streamGeometry(features[i].geometry, stream);
- }
- };
-
- var streamGeometryType = {
- Sphere: function(object, stream) {
- stream.sphere();
- },
- Point: function(object, stream) {
- object = object.coordinates;
- stream.point(object[0], object[1], object[2]);
- },
- MultiPoint: function(object, stream) {
- var coordinates = object.coordinates, i = -1, n = coordinates.length;
- while (++i < n) object = coordinates[i], stream.point(object[0], object[1], object[2]);
- },
- LineString: function(object, stream) {
- streamLine(object.coordinates, stream, 0);
- },
- MultiLineString: function(object, stream) {
- var coordinates = object.coordinates, i = -1, n = coordinates.length;
- while (++i < n) streamLine(coordinates[i], stream, 0);
- },
- Polygon: function(object, stream) {
- streamPolygon(object.coordinates, stream);
- },
- MultiPolygon: function(object, stream) {
- var coordinates = object.coordinates, i = -1, n = coordinates.length;
- while (++i < n) streamPolygon(coordinates[i], stream);
- },
- GeometryCollection: function(object, stream) {
- var geometries = object.geometries, i = -1, n = geometries.length;
- while (++i < n) streamGeometry(geometries[i], stream);
- }
- };
-
- function streamLine(coordinates, stream, closed) {
- var i = -1, n = coordinates.length - closed, coordinate;
- stream.lineStart();
- while (++i < n) coordinate = coordinates[i], stream.point(coordinate[0], coordinate[1], coordinate[2]);
- stream.lineEnd();
- }
-
- function streamPolygon(coordinates, stream) {
- var i = -1, n = coordinates.length;
- stream.polygonStart();
- while (++i < n) streamLine(coordinates[i], stream, 1);
- stream.polygonEnd();
- }
-
- function geoStream(object, stream) {
- if (object && streamObjectType.hasOwnProperty(object.type)) {
- streamObjectType[object.type](object, stream);
- } else {
- streamGeometry(object, stream);
- }
- }
-
- var areaRingSum$1 = new d3Array.Adder();
-
- // hello?
-
- var areaSum$1 = new d3Array.Adder(),
- lambda00$2,
- phi00$2,
- lambda0$2,
- cosPhi0$1,
- sinPhi0$1;
-
- var areaStream$1 = {
- point: noop,
- lineStart: noop,
- lineEnd: noop,
- polygonStart: function() {
- areaRingSum$1 = new d3Array.Adder();
- areaStream$1.lineStart = areaRingStart$1;
- areaStream$1.lineEnd = areaRingEnd$1;
- },
- polygonEnd: function() {
- var areaRing = +areaRingSum$1;
- areaSum$1.add(areaRing < 0 ? tau + areaRing : areaRing);
- this.lineStart = this.lineEnd = this.point = noop;
- },
- sphere: function() {
- areaSum$1.add(tau);
- }
- };
-
- function areaRingStart$1() {
- areaStream$1.point = areaPointFirst$1;
- }
-
- function areaRingEnd$1() {
- areaPoint$1(lambda00$2, phi00$2);
- }
-
- function areaPointFirst$1(lambda, phi) {
- areaStream$1.point = areaPoint$1;
- lambda00$2 = lambda, phi00$2 = phi;
- lambda *= radians, phi *= radians;
- lambda0$2 = lambda, cosPhi0$1 = cos(phi = phi / 2 + quarterPi), sinPhi0$1 = sin(phi);
- }
-
- function areaPoint$1(lambda, phi) {
- lambda *= radians, phi *= radians;
- phi = phi / 2 + quarterPi; // half the angular distance from south pole
-
- // Spherical excess E for a spherical triangle with vertices: south pole,
- // previous point, current point. Uses a formula derived from Cagnoli’s
- // theorem. See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).
- var dLambda = lambda - lambda0$2,
- sdLambda = dLambda >= 0 ? 1 : -1,
- adLambda = sdLambda * dLambda,
- cosPhi = cos(phi),
- sinPhi = sin(phi),
- k = sinPhi0$1 * sinPhi,
- u = cosPhi0$1 * cosPhi + k * cos(adLambda),
- v = k * sdLambda * sin(adLambda);
- areaRingSum$1.add(atan2(v, u));
-
- // Advance the previous points.
- lambda0$2 = lambda, cosPhi0$1 = cosPhi, sinPhi0$1 = sinPhi;
- }
-
- function area(object) {
- areaSum$1 = new d3Array.Adder();
- geoStream(object, areaStream$1);
- return areaSum$1 * 2;
- }
-
- function spherical(cartesian) {
- return [atan2(cartesian[1], cartesian[0]), asin(cartesian[2])];
- }
-
- function cartesian(spherical) {
- var lambda = spherical[0], phi = spherical[1], cosPhi = cos(phi);
- return [cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi)];
- }
-
- function cartesianDot(a, b) {
- return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
- }
-
- function cartesianCross(a, b) {
- return [a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0]];
- }
-
- // TODO return a
- function cartesianAddInPlace(a, b) {
- a[0] += b[0], a[1] += b[1], a[2] += b[2];
- }
-
- function cartesianScale(vector, k) {
- return [vector[0] * k, vector[1] * k, vector[2] * k];
- }
-
- // TODO return d
- function cartesianNormalizeInPlace(d) {
- var l = sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);
- d[0] /= l, d[1] /= l, d[2] /= l;
- }
-
- var lambda0$1, phi0, lambda1, phi1, // bounds
- lambda2, // previous lambda-coordinate
- lambda00$1, phi00$1, // first point
- p0, // previous 3D point
- deltaSum,
- ranges,
- range;
-
- var boundsStream$1 = {
- point: boundsPoint$1,
- lineStart: boundsLineStart,
- lineEnd: boundsLineEnd,
- polygonStart: function() {
- boundsStream$1.point = boundsRingPoint;
- boundsStream$1.lineStart = boundsRingStart;
- boundsStream$1.lineEnd = boundsRingEnd;
- deltaSum = new d3Array.Adder();
- areaStream$1.polygonStart();
- },
- polygonEnd: function() {
- areaStream$1.polygonEnd();
- boundsStream$1.point = boundsPoint$1;
- boundsStream$1.lineStart = boundsLineStart;
- boundsStream$1.lineEnd = boundsLineEnd;
- if (areaRingSum$1 < 0) lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90);
- else if (deltaSum > epsilon) phi1 = 90;
- else if (deltaSum < -epsilon) phi0 = -90;
- range[0] = lambda0$1, range[1] = lambda1;
- },
- sphere: function() {
- lambda0$1 = -(lambda1 = 180), phi0 = -(phi1 = 90);
- }
- };
-
- function boundsPoint$1(lambda, phi) {
- ranges.push(range = [lambda0$1 = lambda, lambda1 = lambda]);
- if (phi < phi0) phi0 = phi;
- if (phi > phi1) phi1 = phi;
- }
-
- function linePoint(lambda, phi) {
- var p = cartesian([lambda * radians, phi * radians]);
- if (p0) {
- var normal = cartesianCross(p0, p),
- equatorial = [normal[1], -normal[0], 0],
- inflection = cartesianCross(equatorial, normal);
- cartesianNormalizeInPlace(inflection);
- inflection = spherical(inflection);
- var delta = lambda - lambda2,
- sign = delta > 0 ? 1 : -1,
- lambdai = inflection[0] * degrees * sign,
- phii,
- antimeridian = abs(delta) > 180;
- if (antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
- phii = inflection[1] * degrees;
- if (phii > phi1) phi1 = phii;
- } else if (lambdai = (lambdai + 360) % 360 - 180, antimeridian ^ (sign * lambda2 < lambdai && lambdai < sign * lambda)) {
- phii = -inflection[1] * degrees;
- if (phii < phi0) phi0 = phii;
- } else {
- if (phi < phi0) phi0 = phi;
- if (phi > phi1) phi1 = phi;
- }
- if (antimeridian) {
- if (lambda < lambda2) {
- if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
- } else {
- if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
- }
- } else {
- if (lambda1 >= lambda0$1) {
- if (lambda < lambda0$1) lambda0$1 = lambda;
- if (lambda > lambda1) lambda1 = lambda;
- } else {
- if (lambda > lambda2) {
- if (angle(lambda0$1, lambda) > angle(lambda0$1, lambda1)) lambda1 = lambda;
- } else {
- if (angle(lambda, lambda1) > angle(lambda0$1, lambda1)) lambda0$1 = lambda;
- }
- }
- }
- } else {
- ranges.push(range = [lambda0$1 = lambda, lambda1 = lambda]);
- }
- if (phi < phi0) phi0 = phi;
- if (phi > phi1) phi1 = phi;
- p0 = p, lambda2 = lambda;
- }
-
- function boundsLineStart() {
- boundsStream$1.point = linePoint;
- }
-
- function boundsLineEnd() {
- range[0] = lambda0$1, range[1] = lambda1;
- boundsStream$1.point = boundsPoint$1;
- p0 = null;
- }
-
- function boundsRingPoint(lambda, phi) {
- if (p0) {
- var delta = lambda - lambda2;
- deltaSum.add(abs(delta) > 180 ? delta + (delta > 0 ? 360 : -360) : delta);
- } else {
- lambda00$1 = lambda, phi00$1 = phi;
- }
- areaStream$1.point(lambda, phi);
- linePoint(lambda, phi);
- }
-
- function boundsRingStart() {
- areaStream$1.lineStart();
- }
-
- function boundsRingEnd() {
- boundsRingPoint(lambda00$1, phi00$1);
- areaStream$1.lineEnd();
- if (abs(deltaSum) > epsilon) lambda0$1 = -(lambda1 = 180);
- range[0] = lambda0$1, range[1] = lambda1;
- p0 = null;
- }
-
- // Finds the left-right distance between two longitudes.
- // This is almost the same as (lambda1 - lambda0 + 360°) % 360°, except that we want
- // the distance between ±180° to be 360°.
- function angle(lambda0, lambda1) {
- return (lambda1 -= lambda0) < 0 ? lambda1 + 360 : lambda1;
- }
-
- function rangeCompare(a, b) {
- return a[0] - b[0];
- }
-
- function rangeContains(range, x) {
- return range[0] <= range[1] ? range[0] <= x && x <= range[1] : x < range[0] || range[1] < x;
- }
-
- function bounds(feature) {
- var i, n, a, b, merged, deltaMax, delta;
-
- phi1 = lambda1 = -(lambda0$1 = phi0 = Infinity);
- ranges = [];
- geoStream(feature, boundsStream$1);
-
- // First, sort ranges by their minimum longitudes.
- if (n = ranges.length) {
- ranges.sort(rangeCompare);
-
- // Then, merge any ranges that overlap.
- for (i = 1, a = ranges[0], merged = [a]; i < n; ++i) {
- b = ranges[i];
- if (rangeContains(a, b[0]) || rangeContains(a, b[1])) {
- if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1];
- if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0];
- } else {
- merged.push(a = b);
- }
- }
-
- // Finally, find the largest gap between the merged ranges.
- // The final bounding box will be the inverse of this gap.
- for (deltaMax = -Infinity, n = merged.length - 1, i = 0, a = merged[n]; i <= n; a = b, ++i) {
- b = merged[i];
- if ((delta = angle(a[1], b[0])) > deltaMax) deltaMax = delta, lambda0$1 = b[0], lambda1 = a[1];
- }
- }
-
- ranges = range = null;
-
- return lambda0$1 === Infinity || phi0 === Infinity
- ? [[NaN, NaN], [NaN, NaN]]
- : [[lambda0$1, phi0], [lambda1, phi1]];
- }
-
- var W0, W1,
- X0$1, Y0$1, Z0$1,
- X1$1, Y1$1, Z1$1,
- X2$1, Y2$1, Z2$1,
- lambda00, phi00, // first point
- x0$4, y0$4, z0; // previous point
-
- var centroidStream$1 = {
- sphere: noop,
- point: centroidPoint$1,
- lineStart: centroidLineStart$1,
- lineEnd: centroidLineEnd$1,
- polygonStart: function() {
- centroidStream$1.lineStart = centroidRingStart$1;
- centroidStream$1.lineEnd = centroidRingEnd$1;
- },
- polygonEnd: function() {
- centroidStream$1.lineStart = centroidLineStart$1;
- centroidStream$1.lineEnd = centroidLineEnd$1;
- }
- };
-
- // Arithmetic mean of Cartesian vectors.
- function centroidPoint$1(lambda, phi) {
- lambda *= radians, phi *= radians;
- var cosPhi = cos(phi);
- centroidPointCartesian(cosPhi * cos(lambda), cosPhi * sin(lambda), sin(phi));
- }
-
- function centroidPointCartesian(x, y, z) {
- ++W0;
- X0$1 += (x - X0$1) / W0;
- Y0$1 += (y - Y0$1) / W0;
- Z0$1 += (z - Z0$1) / W0;
- }
-
- function centroidLineStart$1() {
- centroidStream$1.point = centroidLinePointFirst;
- }
-
- function centroidLinePointFirst(lambda, phi) {
- lambda *= radians, phi *= radians;
- var cosPhi = cos(phi);
- x0$4 = cosPhi * cos(lambda);
- y0$4 = cosPhi * sin(lambda);
- z0 = sin(phi);
- centroidStream$1.point = centroidLinePoint;
- centroidPointCartesian(x0$4, y0$4, z0);
- }
-
- function centroidLinePoint(lambda, phi) {
- lambda *= radians, phi *= radians;
- var cosPhi = cos(phi),
- x = cosPhi * cos(lambda),
- y = cosPhi * sin(lambda),
- z = sin(phi),
- w = atan2(sqrt((w = y0$4 * z - z0 * y) * w + (w = z0 * x - x0$4 * z) * w + (w = x0$4 * y - y0$4 * x) * w), x0$4 * x + y0$4 * y + z0 * z);
- W1 += w;
- X1$1 += w * (x0$4 + (x0$4 = x));
- Y1$1 += w * (y0$4 + (y0$4 = y));
- Z1$1 += w * (z0 + (z0 = z));
- centroidPointCartesian(x0$4, y0$4, z0);
- }
-
- function centroidLineEnd$1() {
- centroidStream$1.point = centroidPoint$1;
- }
-
- // See J. E. Brock, The Inertia Tensor for a Spherical Triangle,
- // J. Applied Mechanics 42, 239 (1975).
- function centroidRingStart$1() {
- centroidStream$1.point = centroidRingPointFirst;
- }
-
- function centroidRingEnd$1() {
- centroidRingPoint(lambda00, phi00);
- centroidStream$1.point = centroidPoint$1;
- }
-
- function centroidRingPointFirst(lambda, phi) {
- lambda00 = lambda, phi00 = phi;
- lambda *= radians, phi *= radians;
- centroidStream$1.point = centroidRingPoint;
- var cosPhi = cos(phi);
- x0$4 = cosPhi * cos(lambda);
- y0$4 = cosPhi * sin(lambda);
- z0 = sin(phi);
- centroidPointCartesian(x0$4, y0$4, z0);
- }
-
- function centroidRingPoint(lambda, phi) {
- lambda *= radians, phi *= radians;
- var cosPhi = cos(phi),
- x = cosPhi * cos(lambda),
- y = cosPhi * sin(lambda),
- z = sin(phi),
- cx = y0$4 * z - z0 * y,
- cy = z0 * x - x0$4 * z,
- cz = x0$4 * y - y0$4 * x,
- m = hypot(cx, cy, cz),
- w = asin(m), // line weight = angle
- v = m && -w / m; // area weight multiplier
- X2$1.add(v * cx);
- Y2$1.add(v * cy);
- Z2$1.add(v * cz);
- W1 += w;
- X1$1 += w * (x0$4 + (x0$4 = x));
- Y1$1 += w * (y0$4 + (y0$4 = y));
- Z1$1 += w * (z0 + (z0 = z));
- centroidPointCartesian(x0$4, y0$4, z0);
- }
-
- function centroid(object) {
- W0 = W1 =
- X0$1 = Y0$1 = Z0$1 =
- X1$1 = Y1$1 = Z1$1 = 0;
- X2$1 = new d3Array.Adder();
- Y2$1 = new d3Array.Adder();
- Z2$1 = new d3Array.Adder();
- geoStream(object, centroidStream$1);
-
- var x = +X2$1,
- y = +Y2$1,
- z = +Z2$1,
- m = hypot(x, y, z);
-
- // If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid.
- if (m < epsilon2) {
- x = X1$1, y = Y1$1, z = Z1$1;
- // If the feature has zero length, fall back to arithmetic mean of point vectors.
- if (W1 < epsilon) x = X0$1, y = Y0$1, z = Z0$1;
- m = hypot(x, y, z);
- // If the feature still has an undefined ccentroid, then return.
- if (m < epsilon2) return [NaN, NaN];
- }
-
- return [atan2(y, x) * degrees, asin(z / m) * degrees];
- }
-
- function constant(x) {
- return function() {
- return x;
- };
- }
-
- function compose(a, b) {
-
- function compose(x, y) {
- return x = a(x, y), b(x[0], x[1]);
- }
-
- if (a.invert && b.invert) compose.invert = function(x, y) {
- return x = b.invert(x, y), x && a.invert(x[0], x[1]);
- };
-
- return compose;
- }
-
- function rotationIdentity(lambda, phi) {
- if (abs(lambda) > pi) lambda -= Math.round(lambda / tau) * tau;
- return [lambda, phi];
- }
-
- rotationIdentity.invert = rotationIdentity;
-
- function rotateRadians(deltaLambda, deltaPhi, deltaGamma) {
- return (deltaLambda %= tau) ? (deltaPhi || deltaGamma ? compose(rotationLambda(deltaLambda), rotationPhiGamma(deltaPhi, deltaGamma))
- : rotationLambda(deltaLambda))
- : (deltaPhi || deltaGamma ? rotationPhiGamma(deltaPhi, deltaGamma)
- : rotationIdentity);
- }
-
- function forwardRotationLambda(deltaLambda) {
- return function(lambda, phi) {
- lambda += deltaLambda;
- if (abs(lambda) > pi) lambda -= Math.round(lambda / tau) * tau;
- return [lambda, phi];
- };
- }
-
- function rotationLambda(deltaLambda) {
- var rotation = forwardRotationLambda(deltaLambda);
- rotation.invert = forwardRotationLambda(-deltaLambda);
- return rotation;
- }
-
- function rotationPhiGamma(deltaPhi, deltaGamma) {
- var cosDeltaPhi = cos(deltaPhi),
- sinDeltaPhi = sin(deltaPhi),
- cosDeltaGamma = cos(deltaGamma),
- sinDeltaGamma = sin(deltaGamma);
-
- function rotation(lambda, phi) {
- var cosPhi = cos(phi),
- x = cos(lambda) * cosPhi,
- y = sin(lambda) * cosPhi,
- z = sin(phi),
- k = z * cosDeltaPhi + x * sinDeltaPhi;
- return [
- atan2(y * cosDeltaGamma - k * sinDeltaGamma, x * cosDeltaPhi - z * sinDeltaPhi),
- asin(k * cosDeltaGamma + y * sinDeltaGamma)
- ];
- }
-
- rotation.invert = function(lambda, phi) {
- var cosPhi = cos(phi),
- x = cos(lambda) * cosPhi,
- y = sin(lambda) * cosPhi,
- z = sin(phi),
- k = z * cosDeltaGamma - y * sinDeltaGamma;
- return [
- atan2(y * cosDeltaGamma + z * sinDeltaGamma, x * cosDeltaPhi + k * sinDeltaPhi),
- asin(k * cosDeltaPhi - x * sinDeltaPhi)
- ];
- };
-
- return rotation;
- }
-
- function rotation(rotate) {
- rotate = rotateRadians(rotate[0] * radians, rotate[1] * radians, rotate.length > 2 ? rotate[2] * radians : 0);
-
- function forward(coordinates) {
- coordinates = rotate(coordinates[0] * radians, coordinates[1] * radians);
- return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
- }
-
- forward.invert = function(coordinates) {
- coordinates = rotate.invert(coordinates[0] * radians, coordinates[1] * radians);
- return coordinates[0] *= degrees, coordinates[1] *= degrees, coordinates;
- };
-
- return forward;
- }
-
- // Generates a circle centered at [0°, 0°], with a given radius and precision.
- function circleStream(stream, radius, delta, direction, t0, t1) {
- if (!delta) return;
- var cosRadius = cos(radius),
- sinRadius = sin(radius),
- step = direction * delta;
- if (t0 == null) {
- t0 = radius + direction * tau;
- t1 = radius - step / 2;
- } else {
- t0 = circleRadius(cosRadius, t0);
- t1 = circleRadius(cosRadius, t1);
- if (direction > 0 ? t0 < t1 : t0 > t1) t0 += direction * tau;
- }
- for (var point, t = t0; direction > 0 ? t > t1 : t < t1; t -= step) {
- point = spherical([cosRadius, -sinRadius * cos(t), -sinRadius * sin(t)]);
- stream.point(point[0], point[1]);
- }
- }
-
- // Returns the signed angle of a cartesian point relative to [cosRadius, 0, 0].
- function circleRadius(cosRadius, point) {
- point = cartesian(point), point[0] -= cosRadius;
- cartesianNormalizeInPlace(point);
- var radius = acos(-point[1]);
- return ((-point[2] < 0 ? -radius : radius) + tau - epsilon) % tau;
- }
-
- function circle() {
- var center = constant([0, 0]),
- radius = constant(90),
- precision = constant(2),
- ring,
- rotate,
- stream = {point: point};
-
- function point(x, y) {
- ring.push(x = rotate(x, y));
- x[0] *= degrees, x[1] *= degrees;
- }
-
- function circle() {
- var c = center.apply(this, arguments),
- r = radius.apply(this, arguments) * radians,
- p = precision.apply(this, arguments) * radians;
- ring = [];
- rotate = rotateRadians(-c[0] * radians, -c[1] * radians, 0).invert;
- circleStream(stream, r, p, 1);
- c = {type: "Polygon", coordinates: [ring]};
- ring = rotate = null;
- return c;
- }
-
- circle.center = function(_) {
- return arguments.length ? (center = typeof _ === "function" ? _ : constant([+_[0], +_[1]]), circle) : center;
- };
-
- circle.radius = function(_) {
- return arguments.length ? (radius = typeof _ === "function" ? _ : constant(+_), circle) : radius;
- };
-
- circle.precision = function(_) {
- return arguments.length ? (precision = typeof _ === "function" ? _ : constant(+_), circle) : precision;
- };
-
- return circle;
- }
-
- function clipBuffer() {
- var lines = [],
- line;
- return {
- point: function(x, y, m) {
- line.push([x, y, m]);
- },
- lineStart: function() {
- lines.push(line = []);
- },
- lineEnd: noop,
- rejoin: function() {
- if (lines.length > 1) lines.push(lines.pop().concat(lines.shift()));
- },
- result: function() {
- var result = lines;
- lines = [];
- line = null;
- return result;
- }
- };
- }
-
- function pointEqual(a, b) {
- return abs(a[0] - b[0]) < epsilon && abs(a[1] - b[1]) < epsilon;
- }
-
- function Intersection(point, points, other, entry) {
- this.x = point;
- this.z = points;
- this.o = other; // another intersection
- this.e = entry; // is an entry?
- this.v = false; // visited
- this.n = this.p = null; // next & previous
- }
-
- // A generalized polygon clipping algorithm: given a polygon that has been cut
- // into its visible line segments, and rejoins the segments by interpolating
- // along the clip edge.
- function clipRejoin(segments, compareIntersection, startInside, interpolate, stream) {
- var subject = [],
- clip = [],
- i,
- n;
-
- segments.forEach(function(segment) {
- if ((n = segment.length - 1) <= 0) return;
- var n, p0 = segment[0], p1 = segment[n], x;
-
- if (pointEqual(p0, p1)) {
- if (!p0[2] && !p1[2]) {
- stream.lineStart();
- for (i = 0; i < n; ++i) stream.point((p0 = segment[i])[0], p0[1]);
- stream.lineEnd();
- return;
- }
- // handle degenerate cases by moving the point
- p1[0] += 2 * epsilon;
- }
-
- subject.push(x = new Intersection(p0, segment, null, true));
- clip.push(x.o = new Intersection(p0, null, x, false));
- subject.push(x = new Intersection(p1, segment, null, false));
- clip.push(x.o = new Intersection(p1, null, x, true));
- });
-
- if (!subject.length) return;
-
- clip.sort(compareIntersection);
- link(subject);
- link(clip);
-
- for (i = 0, n = clip.length; i < n; ++i) {
- clip[i].e = startInside = !startInside;
- }
-
- var start = subject[0],
- points,
- point;
-
- while (1) {
- // Find first unvisited intersection.
- var current = start,
- isSubject = true;
- while (current.v) if ((current = current.n) === start) return;
- points = current.z;
- stream.lineStart();
- do {
- current.v = current.o.v = true;
- if (current.e) {
- if (isSubject) {
- for (i = 0, n = points.length; i < n; ++i) stream.point((point = points[i])[0], point[1]);
- } else {
- interpolate(current.x, current.n.x, 1, stream);
- }
- current = current.n;
- } else {
- if (isSubject) {
- points = current.p.z;
- for (i = points.length - 1; i >= 0; --i) stream.point((point = points[i])[0], point[1]);
- } else {
- interpolate(current.x, current.p.x, -1, stream);
- }
- current = current.p;
- }
- current = current.o;
- points = current.z;
- isSubject = !isSubject;
- } while (!current.v);
- stream.lineEnd();
- }
- }
-
- function link(array) {
- if (!(n = array.length)) return;
- var n,
- i = 0,
- a = array[0],
- b;
- while (++i < n) {
- a.n = b = array[i];
- b.p = a;
- a = b;
- }
- a.n = b = array[0];
- b.p = a;
- }
-
- function longitude(point) {
- return abs(point[0]) <= pi ? point[0] : sign(point[0]) * ((abs(point[0]) + pi) % tau - pi);
- }
-
- function polygonContains(polygon, point) {
- var lambda = longitude(point),
- phi = point[1],
- sinPhi = sin(phi),
- normal = [sin(lambda), -cos(lambda), 0],
- angle = 0,
- winding = 0;
-
- var sum = new d3Array.Adder();
-
- if (sinPhi === 1) phi = halfPi + epsilon;
- else if (sinPhi === -1) phi = -halfPi - epsilon;
-
- for (var i = 0, n = polygon.length; i < n; ++i) {
- if (!(m = (ring = polygon[i]).length)) continue;
- var ring,
- m,
- point0 = ring[m - 1],
- lambda0 = longitude(point0),
- phi0 = point0[1] / 2 + quarterPi,
- sinPhi0 = sin(phi0),
- cosPhi0 = cos(phi0);
-
- for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
- var point1 = ring[j],
- lambda1 = longitude(point1),
- phi1 = point1[1] / 2 + quarterPi,
- sinPhi1 = sin(phi1),
- cosPhi1 = cos(phi1),
- delta = lambda1 - lambda0,
- sign = delta >= 0 ? 1 : -1,
- absDelta = sign * delta,
- antimeridian = absDelta > pi,
- k = sinPhi0 * sinPhi1;
-
- sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));
- angle += antimeridian ? delta + sign * tau : delta;
-
- // Are the longitudes either side of the point’s meridian (lambda),
- // and are the latitudes smaller than the parallel (phi)?
- if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
- var arc = cartesianCross(cartesian(point0), cartesian(point1));
- cartesianNormalizeInPlace(arc);
- var intersection = cartesianCross(normal, arc);
- cartesianNormalizeInPlace(intersection);
- var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);
- if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
- winding += antimeridian ^ delta >= 0 ? 1 : -1;
- }
- }
- }
- }
-
- // First, determine whether the South pole is inside or outside:
- //
- // It is inside if:
- // * the polygon winds around it in a clockwise direction.
- // * the polygon does not (cumulatively) wind around it, but has a negative
- // (counter-clockwise) area.
- //
- // Second, count the (signed) number of times a segment crosses a lambda
- // from the point to the South pole. If it is zero, then the point is the
- // same side as the South pole.
-
- return (angle < -epsilon || angle < epsilon && sum < -epsilon2) ^ (winding & 1);
- }
-
- function clip(pointVisible, clipLine, interpolate, start) {
- return function(sink) {
- var line = clipLine(sink),
- ringBuffer = clipBuffer(),
- ringSink = clipLine(ringBuffer),
- polygonStarted = false,
- polygon,
- segments,
- ring;
-
- var clip = {
- point: point,
- lineStart: lineStart,
- lineEnd: lineEnd,
- polygonStart: function() {
- clip.point = pointRing;
- clip.lineStart = ringStart;
- clip.lineEnd = ringEnd;
- segments = [];
- polygon = [];
- },
- polygonEnd: function() {
- clip.point = point;
- clip.lineStart = lineStart;
- clip.lineEnd = lineEnd;
- segments = d3Array.merge(segments);
- var startInside = polygonContains(polygon, start);
- if (segments.length) {
- if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
- clipRejoin(segments, compareIntersection, startInside, interpolate, sink);
- } else if (startInside) {
- if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
- sink.lineStart();
- interpolate(null, null, 1, sink);
- sink.lineEnd();
- }
- if (polygonStarted) sink.polygonEnd(), polygonStarted = false;
- segments = polygon = null;
- },
- sphere: function() {
- sink.polygonStart();
- sink.lineStart();
- interpolate(null, null, 1, sink);
- sink.lineEnd();
- sink.polygonEnd();
- }
- };
-
- function point(lambda, phi) {
- if (pointVisible(lambda, phi)) sink.point(lambda, phi);
- }
-
- function pointLine(lambda, phi) {
- line.point(lambda, phi);
- }
-
- function lineStart() {
- clip.point = pointLine;
- line.lineStart();
- }
-
- function lineEnd() {
- clip.point = point;
- line.lineEnd();
- }
-
- function pointRing(lambda, phi) {
- ring.push([lambda, phi]);
- ringSink.point(lambda, phi);
- }
-
- function ringStart() {
- ringSink.lineStart();
- ring = [];
- }
-
- function ringEnd() {
- pointRing(ring[0][0], ring[0][1]);
- ringSink.lineEnd();
-
- var clean = ringSink.clean(),
- ringSegments = ringBuffer.result(),
- i, n = ringSegments.length, m,
- segment,
- point;
-
- ring.pop();
- polygon.push(ring);
- ring = null;
-
- if (!n) return;
-
- // No intersections.
- if (clean & 1) {
- segment = ringSegments[0];
- if ((m = segment.length - 1) > 0) {
- if (!polygonStarted) sink.polygonStart(), polygonStarted = true;
- sink.lineStart();
- for (i = 0; i < m; ++i) sink.point((point = segment[i])[0], point[1]);
- sink.lineEnd();
- }
- return;
- }
-
- // Rejoin connected segments.
- // TODO reuse ringBuffer.rejoin()?
- if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift()));
-
- segments.push(ringSegments.filter(validSegment));
- }
-
- return clip;
- };
- }
-
- function validSegment(segment) {
- return segment.length > 1;
- }
-
- // Intersections are sorted along the clip edge. For both antimeridian cutting
- // and circle clipping, the same comparison is used.
- function compareIntersection(a, b) {
- return ((a = a.x)[0] < 0 ? a[1] - halfPi - epsilon : halfPi - a[1])
- - ((b = b.x)[0] < 0 ? b[1] - halfPi - epsilon : halfPi - b[1]);
- }
-
- var clipAntimeridian = clip(
- function() { return true; },
- clipAntimeridianLine,
- clipAntimeridianInterpolate,
- [-pi, -halfPi]
- );
-
- // Takes a line and cuts into visible segments. Return values: 0 - there were
- // intersections or the line was empty; 1 - no intersections; 2 - there were
- // intersections, and the first and last segments should be rejoined.
- function clipAntimeridianLine(stream) {
- var lambda0 = NaN,
- phi0 = NaN,
- sign0 = NaN,
- clean; // no intersections
-
- return {
- lineStart: function() {
- stream.lineStart();
- clean = 1;
- },
- point: function(lambda1, phi1) {
- var sign1 = lambda1 > 0 ? pi : -pi,
- delta = abs(lambda1 - lambda0);
- if (abs(delta - pi) < epsilon) { // line crosses a pole
- stream.point(lambda0, phi0 = (phi0 + phi1) / 2 > 0 ? halfPi : -halfPi);
- stream.point(sign0, phi0);
- stream.lineEnd();
- stream.lineStart();
- stream.point(sign1, phi0);
- stream.point(lambda1, phi0);
- clean = 0;
- } else if (sign0 !== sign1 && delta >= pi) { // line crosses antimeridian
- if (abs(lambda0 - sign0) < epsilon) lambda0 -= sign0 * epsilon; // handle degeneracies
- if (abs(lambda1 - sign1) < epsilon) lambda1 -= sign1 * epsilon;
- phi0 = clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1);
- stream.point(sign0, phi0);
- stream.lineEnd();
- stream.lineStart();
- stream.point(sign1, phi0);
- clean = 0;
- }
- stream.point(lambda0 = lambda1, phi0 = phi1);
- sign0 = sign1;
- },
- lineEnd: function() {
- stream.lineEnd();
- lambda0 = phi0 = NaN;
- },
- clean: function() {
- return 2 - clean; // if intersections, rejoin first and last segments
- }
- };
- }
-
- function clipAntimeridianIntersect(lambda0, phi0, lambda1, phi1) {
- var cosPhi0,
- cosPhi1,
- sinLambda0Lambda1 = sin(lambda0 - lambda1);
- return abs(sinLambda0Lambda1) > epsilon
- ? atan((sin(phi0) * (cosPhi1 = cos(phi1)) * sin(lambda1)
- - sin(phi1) * (cosPhi0 = cos(phi0)) * sin(lambda0))
- / (cosPhi0 * cosPhi1 * sinLambda0Lambda1))
- : (phi0 + phi1) / 2;
- }
-
- function clipAntimeridianInterpolate(from, to, direction, stream) {
- var phi;
- if (from == null) {
- phi = direction * halfPi;
- stream.point(-pi, phi);
- stream.point(0, phi);
- stream.point(pi, phi);
- stream.point(pi, 0);
- stream.point(pi, -phi);
- stream.point(0, -phi);
- stream.point(-pi, -phi);
- stream.point(-pi, 0);
- stream.point(-pi, phi);
- } else if (abs(from[0] - to[0]) > epsilon) {
- var lambda = from[0] < to[0] ? pi : -pi;
- phi = direction * lambda / 2;
- stream.point(-lambda, phi);
- stream.point(0, phi);
- stream.point(lambda, phi);
- } else {
- stream.point(to[0], to[1]);
- }
- }
-
- function clipCircle(radius) {
- var cr = cos(radius),
- delta = 2 * radians,
- smallRadius = cr > 0,
- notHemisphere = abs(cr) > epsilon; // TODO optimise for this common case
-
- function interpolate(from, to, direction, stream) {
- circleStream(stream, radius, delta, direction, from, to);
- }
-
- function visible(lambda, phi) {
- return cos(lambda) * cos(phi) > cr;
- }
-
- // Takes a line and cuts into visible segments. Return values used for polygon
- // clipping: 0 - there were intersections or the line was empty; 1 - no
- // intersections 2 - there were intersections, and the first and last segments
- // should be rejoined.
- function clipLine(stream) {
- var point0, // previous point
- c0, // code for previous point
- v0, // visibility of previous point
- v00, // visibility of first point
- clean; // no intersections
- return {
- lineStart: function() {
- v00 = v0 = false;
- clean = 1;
- },
- point: function(lambda, phi) {
- var point1 = [lambda, phi],
- point2,
- v = visible(lambda, phi),
- c = smallRadius
- ? v ? 0 : code(lambda, phi)
- : v ? code(lambda + (lambda < 0 ? pi : -pi), phi) : 0;
- if (!point0 && (v00 = v0 = v)) stream.lineStart();
- if (v !== v0) {
- point2 = intersect(point0, point1);
- if (!point2 || pointEqual(point0, point2) || pointEqual(point1, point2))
- point1[2] = 1;
- }
- if (v !== v0) {
- clean = 0;
- if (v) {
- // outside going in
- stream.lineStart();
- point2 = intersect(point1, point0);
- stream.point(point2[0], point2[1]);
- } else {
- // inside going out
- point2 = intersect(point0, point1);
- stream.point(point2[0], point2[1], 2);
- stream.lineEnd();
- }
- point0 = point2;
- } else if (notHemisphere && point0 && smallRadius ^ v) {
- var t;
- // If the codes for two points are different, or are both zero,
- // and there this segment intersects with the small circle.
- if (!(c & c0) && (t = intersect(point1, point0, true))) {
- clean = 0;
- if (smallRadius) {
- stream.lineStart();
- stream.point(t[0][0], t[0][1]);
- stream.point(t[1][0], t[1][1]);
- stream.lineEnd();
- } else {
- stream.point(t[1][0], t[1][1]);
- stream.lineEnd();
- stream.lineStart();
- stream.point(t[0][0], t[0][1], 3);
- }
- }
- }
- if (v && (!point0 || !pointEqual(point0, point1))) {
- stream.point(point1[0], point1[1]);
- }
- point0 = point1, v0 = v, c0 = c;
- },
- lineEnd: function() {
- if (v0) stream.lineEnd();
- point0 = null;
- },
- // Rejoin first and last segments if there were intersections and the first
- // and last points were visible.
- clean: function() {
- return clean | ((v00 && v0) << 1);
- }
- };
- }
-
- // Intersects the great circle between a and b with the clip circle.
- function intersect(a, b, two) {
- var pa = cartesian(a),
- pb = cartesian(b);
-
- // We have two planes, n1.p = d1 and n2.p = d2.
- // Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 ⨯ n2).
- var n1 = [1, 0, 0], // normal
- n2 = cartesianCross(pa, pb),
- n2n2 = cartesianDot(n2, n2),
- n1n2 = n2[0], // cartesianDot(n1, n2),
- determinant = n2n2 - n1n2 * n1n2;
-
- // Two polar points.
- if (!determinant) return !two && a;
-
- var c1 = cr * n2n2 / determinant,
- c2 = -cr * n1n2 / determinant,
- n1xn2 = cartesianCross(n1, n2),
- A = cartesianScale(n1, c1),
- B = cartesianScale(n2, c2);
- cartesianAddInPlace(A, B);
-
- // Solve |p(t)|^2 = 1.
- var u = n1xn2,
- w = cartesianDot(A, u),
- uu = cartesianDot(u, u),
- t2 = w * w - uu * (cartesianDot(A, A) - 1);
-
- if (t2 < 0) return;
-
- var t = sqrt(t2),
- q = cartesianScale(u, (-w - t) / uu);
- cartesianAddInPlace(q, A);
- q = spherical(q);
-
- if (!two) return q;
-
- // Two intersection points.
- var lambda0 = a[0],
- lambda1 = b[0],
- phi0 = a[1],
- phi1 = b[1],
- z;
-
- if (lambda1 < lambda0) z = lambda0, lambda0 = lambda1, lambda1 = z;
-
- var delta = lambda1 - lambda0,
- polar = abs(delta - pi) < epsilon,
- meridian = polar || delta < epsilon;
-
- if (!polar && phi1 < phi0) z = phi0, phi0 = phi1, phi1 = z;
-
- // Check that the first point is between a and b.
- if (meridian
- ? polar
- ? phi0 + phi1 > 0 ^ q[1] < (abs(q[0] - lambda0) < epsilon ? phi0 : phi1)
- : phi0 <= q[1] && q[1] <= phi1
- : delta > pi ^ (lambda0 <= q[0] && q[0] <= lambda1)) {
- var q1 = cartesianScale(u, (-w + t) / uu);
- cartesianAddInPlace(q1, A);
- return [q, spherical(q1)];
- }
- }
-
- // Generates a 4-bit vector representing the location of a point relative to
- // the small circle's bounding box.
- function code(lambda, phi) {
- var r = smallRadius ? radius : pi - radius,
- code = 0;
- if (lambda < -r) code |= 1; // left
- else if (lambda > r) code |= 2; // right
- if (phi < -r) code |= 4; // below
- else if (phi > r) code |= 8; // above
- return code;
- }
-
- return clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-pi, radius - pi]);
- }
-
- function clipLine(a, b, x0, y0, x1, y1) {
- var ax = a[0],
- ay = a[1],
- bx = b[0],
- by = b[1],
- t0 = 0,
- t1 = 1,
- dx = bx - ax,
- dy = by - ay,
- r;
-
- r = x0 - ax;
- if (!dx && r > 0) return;
- r /= dx;
- if (dx < 0) {
- if (r < t0) return;
- if (r < t1) t1 = r;
- } else if (dx > 0) {
- if (r > t1) return;
- if (r > t0) t0 = r;
- }
-
- r = x1 - ax;
- if (!dx && r < 0) return;
- r /= dx;
- if (dx < 0) {
- if (r > t1) return;
- if (r > t0) t0 = r;
- } else if (dx > 0) {
- if (r < t0) return;
- if (r < t1) t1 = r;
- }
-
- r = y0 - ay;
- if (!dy && r > 0) return;
- r /= dy;
- if (dy < 0) {
- if (r < t0) return;
- if (r < t1) t1 = r;
- } else if (dy > 0) {
- if (r > t1) return;
- if (r > t0) t0 = r;
- }
-
- r = y1 - ay;
- if (!dy && r < 0) return;
- r /= dy;
- if (dy < 0) {
- if (r > t1) return;
- if (r > t0) t0 = r;
- } else if (dy > 0) {
- if (r < t0) return;
- if (r < t1) t1 = r;
- }
-
- if (t0 > 0) a[0] = ax + t0 * dx, a[1] = ay + t0 * dy;
- if (t1 < 1) b[0] = ax + t1 * dx, b[1] = ay + t1 * dy;
- return true;
- }
-
- var clipMax = 1e9, clipMin = -clipMax;
-
- // TODO Use d3-polygon’s polygonContains here for the ring check?
- // TODO Eliminate duplicate buffering in clipBuffer and polygon.push?
-
- function clipRectangle(x0, y0, x1, y1) {
-
- function visible(x, y) {
- return x0 <= x && x <= x1 && y0 <= y && y <= y1;
- }
-
- function interpolate(from, to, direction, stream) {
- var a = 0, a1 = 0;
- if (from == null
- || (a = corner(from, direction)) !== (a1 = corner(to, direction))
- || comparePoint(from, to) < 0 ^ direction > 0) {
- do stream.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0);
- while ((a = (a + direction + 4) % 4) !== a1);
- } else {
- stream.point(to[0], to[1]);
- }
- }
-
- function corner(p, direction) {
- return abs(p[0] - x0) < epsilon ? direction > 0 ? 0 : 3
- : abs(p[0] - x1) < epsilon ? direction > 0 ? 2 : 1
- : abs(p[1] - y0) < epsilon ? direction > 0 ? 1 : 0
- : direction > 0 ? 3 : 2; // abs(p[1] - y1) < epsilon
- }
-
- function compareIntersection(a, b) {
- return comparePoint(a.x, b.x);
- }
-
- function comparePoint(a, b) {
- var ca = corner(a, 1),
- cb = corner(b, 1);
- return ca !== cb ? ca - cb
- : ca === 0 ? b[1] - a[1]
- : ca === 1 ? a[0] - b[0]
- : ca === 2 ? a[1] - b[1]
- : b[0] - a[0];
- }
-
- return function(stream) {
- var activeStream = stream,
- bufferStream = clipBuffer(),
- segments,
- polygon,
- ring,
- x__, y__, v__, // first point
- x_, y_, v_, // previous point
- first,
- clean;
-
- var clipStream = {
- point: point,
- lineStart: lineStart,
- lineEnd: lineEnd,
- polygonStart: polygonStart,
- polygonEnd: polygonEnd
- };
-
- function point(x, y) {
- if (visible(x, y)) activeStream.point(x, y);
- }
-
- function polygonInside() {
- var winding = 0;
-
- for (var i = 0, n = polygon.length; i < n; ++i) {
- for (var ring = polygon[i], j = 1, m = ring.length, point = ring[0], a0, a1, b0 = point[0], b1 = point[1]; j < m; ++j) {
- a0 = b0, a1 = b1, point = ring[j], b0 = point[0], b1 = point[1];
- if (a1 <= y1) { if (b1 > y1 && (b0 - a0) * (y1 - a1) > (b1 - a1) * (x0 - a0)) ++winding; }
- else { if (b1 <= y1 && (b0 - a0) * (y1 - a1) < (b1 - a1) * (x0 - a0)) --winding; }
- }
- }
-
- return winding;
- }
-
- // Buffer geometry within a polygon and then clip it en masse.
- function polygonStart() {
- activeStream = bufferStream, segments = [], polygon = [], clean = true;
- }
-
- function polygonEnd() {
- var startInside = polygonInside(),
- cleanInside = clean && startInside,
- visible = (segments = d3Array.merge(segments)).length;
- if (cleanInside || visible) {
- stream.polygonStart();
- if (cleanInside) {
- stream.lineStart();
- interpolate(null, null, 1, stream);
- stream.lineEnd();
- }
- if (visible) {
- clipRejoin(segments, compareIntersection, startInside, interpolate, stream);
- }
- stream.polygonEnd();
- }
- activeStream = stream, segments = polygon = ring = null;
- }
-
- function lineStart() {
- clipStream.point = linePoint;
- if (polygon) polygon.push(ring = []);
- first = true;
- v_ = false;
- x_ = y_ = NaN;
- }
-
- // TODO rather than special-case polygons, simply handle them separately.
- // Ideally, coincident intersection points should be jittered to avoid
- // clipping issues.
- function lineEnd() {
- if (segments) {
- linePoint(x__, y__);
- if (v__ && v_) bufferStream.rejoin();
- segments.push(bufferStream.result());
- }
- clipStream.point = point;
- if (v_) activeStream.lineEnd();
- }
-
- function linePoint(x, y) {
- var v = visible(x, y);
- if (polygon) ring.push([x, y]);
- if (first) {
- x__ = x, y__ = y, v__ = v;
- first = false;
- if (v) {
- activeStream.lineStart();
- activeStream.point(x, y);
- }
- } else {
- if (v && v_) activeStream.point(x, y);
- else {
- var a = [x_ = Math.max(clipMin, Math.min(clipMax, x_)), y_ = Math.max(clipMin, Math.min(clipMax, y_))],
- b = [x = Math.max(clipMin, Math.min(clipMax, x)), y = Math.max(clipMin, Math.min(clipMax, y))];
- if (clipLine(a, b, x0, y0, x1, y1)) {
- if (!v_) {
- activeStream.lineStart();
- activeStream.point(a[0], a[1]);
- }
- activeStream.point(b[0], b[1]);
- if (!v) activeStream.lineEnd();
- clean = false;
- } else if (v) {
- activeStream.lineStart();
- activeStream.point(x, y);
- clean = false;
- }
- }
- }
- x_ = x, y_ = y, v_ = v;
- }
-
- return clipStream;
- };
- }
-
- function extent() {
- var x0 = 0,
- y0 = 0,
- x1 = 960,
- y1 = 500,
- cache,
- cacheStream,
- clip;
-
- return clip = {
- stream: function(stream) {
- return cache && cacheStream === stream ? cache : cache = clipRectangle(x0, y0, x1, y1)(cacheStream = stream);
- },
- extent: function(_) {
- return arguments.length ? (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1], cache = cacheStream = null, clip) : [[x0, y0], [x1, y1]];
- }
- };
- }
-
- var lengthSum$1,
- lambda0,
- sinPhi0,
- cosPhi0;
-
- var lengthStream$1 = {
- sphere: noop,
- point: noop,
- lineStart: lengthLineStart,
- lineEnd: noop,
- polygonStart: noop,
- polygonEnd: noop
- };
-
- function lengthLineStart() {
- lengthStream$1.point = lengthPointFirst$1;
- lengthStream$1.lineEnd = lengthLineEnd;
- }
-
- function lengthLineEnd() {
- lengthStream$1.point = lengthStream$1.lineEnd = noop;
- }
-
- function lengthPointFirst$1(lambda, phi) {
- lambda *= radians, phi *= radians;
- lambda0 = lambda, sinPhi0 = sin(phi), cosPhi0 = cos(phi);
- lengthStream$1.point = lengthPoint$1;
- }
-
- function lengthPoint$1(lambda, phi) {
- lambda *= radians, phi *= radians;
- var sinPhi = sin(phi),
- cosPhi = cos(phi),
- delta = abs(lambda - lambda0),
- cosDelta = cos(delta),
- sinDelta = sin(delta),
- x = cosPhi * sinDelta,
- y = cosPhi0 * sinPhi - sinPhi0 * cosPhi * cosDelta,
- z = sinPhi0 * sinPhi + cosPhi0 * cosPhi * cosDelta;
- lengthSum$1.add(atan2(sqrt(x * x + y * y), z));
- lambda0 = lambda, sinPhi0 = sinPhi, cosPhi0 = cosPhi;
- }
-
- function length(object) {
- lengthSum$1 = new d3Array.Adder();
- geoStream(object, lengthStream$1);
- return +lengthSum$1;
- }
-
- var coordinates = [null, null],
- object = {type: "LineString", coordinates: coordinates};
-
- function distance(a, b) {
- coordinates[0] = a;
- coordinates[1] = b;
- return length(object);
- }
-
- var containsObjectType = {
- Feature: function(object, point) {
- return containsGeometry(object.geometry, point);
- },
- FeatureCollection: function(object, point) {
- var features = object.features, i = -1, n = features.length;
- while (++i < n) if (containsGeometry(features[i].geometry, point)) return true;
- return false;
- }
- };
-
- var containsGeometryType = {
- Sphere: function() {
- return true;
- },
- Point: function(object, point) {
- return containsPoint(object.coordinates, point);
- },
- MultiPoint: function(object, point) {
- var coordinates = object.coordinates, i = -1, n = coordinates.length;
- while (++i < n) if (containsPoint(coordinates[i], point)) return true;
- return false;
- },
- LineString: function(object, point) {
- return containsLine(object.coordinates, point);
- },
- MultiLineString: function(object, point) {
- var coordinates = object.coordinates, i = -1, n = coordinates.length;
- while (++i < n) if (containsLine(coordinates[i], point)) return true;
- return false;
- },
- Polygon: function(object, point) {
- return containsPolygon(object.coordinates, point);
- },
- MultiPolygon: function(object, point) {
- var coordinates = object.coordinates, i = -1, n = coordinates.length;
- while (++i < n) if (containsPolygon(coordinates[i], point)) return true;
- return false;
- },
- GeometryCollection: function(object, point) {
- var geometries = object.geometries, i = -1, n = geometries.length;
- while (++i < n) if (containsGeometry(geometries[i], point)) return true;
- return false;
- }
- };
-
- function containsGeometry(geometry, point) {
- return geometry && containsGeometryType.hasOwnProperty(geometry.type)
- ? containsGeometryType[geometry.type](geometry, point)
- : false;
- }
-
- function containsPoint(coordinates, point) {
- return distance(coordinates, point) === 0;
- }
-
- function containsLine(coordinates, point) {
- var ao, bo, ab;
- for (var i = 0, n = coordinates.length; i < n; i++) {
- bo = distance(coordinates[i], point);
- if (bo === 0) return true;
- if (i > 0) {
- ab = distance(coordinates[i], coordinates[i - 1]);
- if (
- ab > 0 &&
- ao <= ab &&
- bo <= ab &&
- (ao + bo - ab) * (1 - Math.pow((ao - bo) / ab, 2)) < epsilon2 * ab
- )
- return true;
- }
- ao = bo;
- }
- return false;
- }
-
- function containsPolygon(coordinates, point) {
- return !!polygonContains(coordinates.map(ringRadians), pointRadians(point));
- }
-
- function ringRadians(ring) {
- return ring = ring.map(pointRadians), ring.pop(), ring;
- }
-
- function pointRadians(point) {
- return [point[0] * radians, point[1] * radians];
- }
-
- function contains(object, point) {
- return (object && containsObjectType.hasOwnProperty(object.type)
- ? containsObjectType[object.type]
- : containsGeometry)(object, point);
- }
-
- function graticuleX(y0, y1, dy) {
- var y = d3Array.range(y0, y1 - epsilon, dy).concat(y1);
- return function(x) { return y.map(function(y) { return [x, y]; }); };
- }
-
- function graticuleY(x0, x1, dx) {
- var x = d3Array.range(x0, x1 - epsilon, dx).concat(x1);
- return function(y) { return x.map(function(x) { return [x, y]; }); };
- }
-
- function graticule() {
- var x1, x0, X1, X0,
- y1, y0, Y1, Y0,
- dx = 10, dy = dx, DX = 90, DY = 360,
- x, y, X, Y,
- precision = 2.5;
-
- function graticule() {
- return {type: "MultiLineString", coordinates: lines()};
- }
-
- function lines() {
- return d3Array.range(ceil(X0 / DX) * DX, X1, DX).map(X)
- .concat(d3Array.range(ceil(Y0 / DY) * DY, Y1, DY).map(Y))
- .concat(d3Array.range(ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs(x % DX) > epsilon; }).map(x))
- .concat(d3Array.range(ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs(y % DY) > epsilon; }).map(y));
- }
-
- graticule.lines = function() {
- return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; });
- };
-
- graticule.outline = function() {
- return {
- type: "Polygon",
- coordinates: [
- X(X0).concat(
- Y(Y1).slice(1),
- X(X1).reverse().slice(1),
- Y(Y0).reverse().slice(1))
- ]
- };
- };
-
- graticule.extent = function(_) {
- if (!arguments.length) return graticule.extentMinor();
- return graticule.extentMajor(_).extentMinor(_);
- };
-
- graticule.extentMajor = function(_) {
- if (!arguments.length) return [[X0, Y0], [X1, Y1]];
- X0 = +_[0][0], X1 = +_[1][0];
- Y0 = +_[0][1], Y1 = +_[1][1];
- if (X0 > X1) _ = X0, X0 = X1, X1 = _;
- if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _;
- return graticule.precision(precision);
- };
-
- graticule.extentMinor = function(_) {
- if (!arguments.length) return [[x0, y0], [x1, y1]];
- x0 = +_[0][0], x1 = +_[1][0];
- y0 = +_[0][1], y1 = +_[1][1];
- if (x0 > x1) _ = x0, x0 = x1, x1 = _;
- if (y0 > y1) _ = y0, y0 = y1, y1 = _;
- return graticule.precision(precision);
- };
-
- graticule.step = function(_) {
- if (!arguments.length) return graticule.stepMinor();
- return graticule.stepMajor(_).stepMinor(_);
- };
-
- graticule.stepMajor = function(_) {
- if (!arguments.length) return [DX, DY];
- DX = +_[0], DY = +_[1];
- return graticule;
- };
-
- graticule.stepMinor = function(_) {
- if (!arguments.length) return [dx, dy];
- dx = +_[0], dy = +_[1];
- return graticule;
- };
-
- graticule.precision = function(_) {
- if (!arguments.length) return precision;
- precision = +_;
- x = graticuleX(y0, y1, 90);
- y = graticuleY(x0, x1, precision);
- X = graticuleX(Y0, Y1, 90);
- Y = graticuleY(X0, X1, precision);
- return graticule;
- };
-
- return graticule
- .extentMajor([[-180, -90 + epsilon], [180, 90 - epsilon]])
- .extentMinor([[-180, -80 - epsilon], [180, 80 + epsilon]]);
- }
-
- function graticule10() {
- return graticule()();
- }
-
- function interpolate(a, b) {
- var x0 = a[0] * radians,
- y0 = a[1] * radians,
- x1 = b[0] * radians,
- y1 = b[1] * radians,
- cy0 = cos(y0),
- sy0 = sin(y0),
- cy1 = cos(y1),
- sy1 = sin(y1),
- kx0 = cy0 * cos(x0),
- ky0 = cy0 * sin(x0),
- kx1 = cy1 * cos(x1),
- ky1 = cy1 * sin(x1),
- d = 2 * asin(sqrt(haversin(y1 - y0) + cy0 * cy1 * haversin(x1 - x0))),
- k = sin(d);
-
- var interpolate = d ? function(t) {
- var B = sin(t *= d) / k,
- A = sin(d - t) / k,
- x = A * kx0 + B * kx1,
- y = A * ky0 + B * ky1,
- z = A * sy0 + B * sy1;
- return [
- atan2(y, x) * degrees,
- atan2(z, sqrt(x * x + y * y)) * degrees
- ];
- } : function() {
- return [x0 * degrees, y0 * degrees];
- };
-
- interpolate.distance = d;
-
- return interpolate;
- }
-
- var identity$1 = x => x;
-
- var areaSum = new d3Array.Adder(),
- areaRingSum = new d3Array.Adder(),
- x00$2,
- y00$2,
- x0$3,
- y0$3;
-
- var areaStream = {
- point: noop,
- lineStart: noop,
- lineEnd: noop,
- polygonStart: function() {
- areaStream.lineStart = areaRingStart;
- areaStream.lineEnd = areaRingEnd;
- },
- polygonEnd: function() {
- areaStream.lineStart = areaStream.lineEnd = areaStream.point = noop;
- areaSum.add(abs(areaRingSum));
- areaRingSum = new d3Array.Adder();
- },
- result: function() {
- var area = areaSum / 2;
- areaSum = new d3Array.Adder();
- return area;
- }
- };
-
- function areaRingStart() {
- areaStream.point = areaPointFirst;
- }
-
- function areaPointFirst(x, y) {
- areaStream.point = areaPoint;
- x00$2 = x0$3 = x, y00$2 = y0$3 = y;
- }
-
- function areaPoint(x, y) {
- areaRingSum.add(y0$3 * x - x0$3 * y);
- x0$3 = x, y0$3 = y;
- }
-
- function areaRingEnd() {
- areaPoint(x00$2, y00$2);
- }
-
- var x0$2 = Infinity,
- y0$2 = x0$2,
- x1 = -x0$2,
- y1 = x1;
-
- var boundsStream = {
- point: boundsPoint,
- lineStart: noop,
- lineEnd: noop,
- polygonStart: noop,
- polygonEnd: noop,
- result: function() {
- var bounds = [[x0$2, y0$2], [x1, y1]];
- x1 = y1 = -(y0$2 = x0$2 = Infinity);
- return bounds;
- }
- };
-
- function boundsPoint(x, y) {
- if (x < x0$2) x0$2 = x;
- if (x > x1) x1 = x;
- if (y < y0$2) y0$2 = y;
- if (y > y1) y1 = y;
- }
-
- // TODO Enforce positive area for exterior, negative area for interior?
-
- var X0 = 0,
- Y0 = 0,
- Z0 = 0,
- X1 = 0,
- Y1 = 0,
- Z1 = 0,
- X2 = 0,
- Y2 = 0,
- Z2 = 0,
- x00$1,
- y00$1,
- x0$1,
- y0$1;
-
- var centroidStream = {
- point: centroidPoint,
- lineStart: centroidLineStart,
- lineEnd: centroidLineEnd,
- polygonStart: function() {
- centroidStream.lineStart = centroidRingStart;
- centroidStream.lineEnd = centroidRingEnd;
- },
- polygonEnd: function() {
- centroidStream.point = centroidPoint;
- centroidStream.lineStart = centroidLineStart;
- centroidStream.lineEnd = centroidLineEnd;
- },
- result: function() {
- var centroid = Z2 ? [X2 / Z2, Y2 / Z2]
- : Z1 ? [X1 / Z1, Y1 / Z1]
- : Z0 ? [X0 / Z0, Y0 / Z0]
- : [NaN, NaN];
- X0 = Y0 = Z0 =
- X1 = Y1 = Z1 =
- X2 = Y2 = Z2 = 0;
- return centroid;
- }
- };
-
- function centroidPoint(x, y) {
- X0 += x;
- Y0 += y;
- ++Z0;
- }
-
- function centroidLineStart() {
- centroidStream.point = centroidPointFirstLine;
- }
-
- function centroidPointFirstLine(x, y) {
- centroidStream.point = centroidPointLine;
- centroidPoint(x0$1 = x, y0$1 = y);
- }
-
- function centroidPointLine(x, y) {
- var dx = x - x0$1, dy = y - y0$1, z = sqrt(dx * dx + dy * dy);
- X1 += z * (x0$1 + x) / 2;
- Y1 += z * (y0$1 + y) / 2;
- Z1 += z;
- centroidPoint(x0$1 = x, y0$1 = y);
- }
-
- function centroidLineEnd() {
- centroidStream.point = centroidPoint;
- }
-
- function centroidRingStart() {
- centroidStream.point = centroidPointFirstRing;
- }
-
- function centroidRingEnd() {
- centroidPointRing(x00$1, y00$1);
- }
-
- function centroidPointFirstRing(x, y) {
- centroidStream.point = centroidPointRing;
- centroidPoint(x00$1 = x0$1 = x, y00$1 = y0$1 = y);
- }
-
- function centroidPointRing(x, y) {
- var dx = x - x0$1,
- dy = y - y0$1,
- z = sqrt(dx * dx + dy * dy);
-
- X1 += z * (x0$1 + x) / 2;
- Y1 += z * (y0$1 + y) / 2;
- Z1 += z;
-
- z = y0$1 * x - x0$1 * y;
- X2 += z * (x0$1 + x);
- Y2 += z * (y0$1 + y);
- Z2 += z * 3;
- centroidPoint(x0$1 = x, y0$1 = y);
- }
-
- function PathContext(context) {
- this._context = context;
- }
-
- PathContext.prototype = {
- _radius: 4.5,
- pointRadius: function(_) {
- return this._radius = _, this;
- },
- polygonStart: function() {
- this._line = 0;
- },
- polygonEnd: function() {
- this._line = NaN;
- },
- lineStart: function() {
- this._point = 0;
- },
- lineEnd: function() {
- if (this._line === 0) this._context.closePath();
- this._point = NaN;
- },
- point: function(x, y) {
- switch (this._point) {
- case 0: {
- this._context.moveTo(x, y);
- this._point = 1;
- break;
- }
- case 1: {
- this._context.lineTo(x, y);
- break;
- }
- default: {
- this._context.moveTo(x + this._radius, y);
- this._context.arc(x, y, this._radius, 0, tau);
- break;
- }
- }
- },
- result: noop
- };
-
- var lengthSum = new d3Array.Adder(),
- lengthRing,
- x00,
- y00,
- x0,
- y0;
-
- var lengthStream = {
- point: noop,
- lineStart: function() {
- lengthStream.point = lengthPointFirst;
- },
- lineEnd: function() {
- if (lengthRing) lengthPoint(x00, y00);
- lengthStream.point = noop;
- },
- polygonStart: function() {
- lengthRing = true;
- },
- polygonEnd: function() {
- lengthRing = null;
- },
- result: function() {
- var length = +lengthSum;
- lengthSum = new d3Array.Adder();
- return length;
- }
- };
-
- function lengthPointFirst(x, y) {
- lengthStream.point = lengthPoint;
- x00 = x0 = x, y00 = y0 = y;
- }
-
- function lengthPoint(x, y) {
- x0 -= x, y0 -= y;
- lengthSum.add(sqrt(x0 * x0 + y0 * y0));
- x0 = x, y0 = y;
- }
-
- // Simple caching for constant-radius points.
- let cacheDigits, cacheAppend, cacheRadius, cacheCircle;
-
- class PathString {
- constructor(digits) {
- this._append = digits == null ? append : appendRound(digits);
- this._radius = 4.5;
- this._ = "";
- }
- pointRadius(_) {
- this._radius = +_;
- return this;
- }
- polygonStart() {
- this._line = 0;
- }
- polygonEnd() {
- this._line = NaN;
- }
- lineStart() {
- this._point = 0;
- }
- lineEnd() {
- if (this._line === 0) this._ += "Z";
- this._point = NaN;
- }
- point(x, y) {
- switch (this._point) {
- case 0: {
- this._append`M${x},${y}`;
- this._point = 1;
- break;
- }
- case 1: {
- this._append`L${x},${y}`;
- break;
- }
- default: {
- this._append`M${x},${y}`;
- if (this._radius !== cacheRadius || this._append !== cacheAppend) {
- const r = this._radius;
- const s = this._;
- this._ = ""; // stash the old string so we can cache the circle path fragment
- this._append`m0,${r}a${r},${r} 0 1,1 0,${-2 * r}a${r},${r} 0 1,1 0,${2 * r}z`;
- cacheRadius = r;
- cacheAppend = this._append;
- cacheCircle = this._;
- this._ = s;
- }
- this._ += cacheCircle;
- break;
- }
- }
- }
- result() {
- const result = this._;
- this._ = "";
- return result.length ? result : null;
- }
- }
-
- function append(strings) {
- let i = 1;
- this._ += strings[0];
- for (const j = strings.length; i < j; ++i) {
- this._ += arguments[i] + strings[i];
- }
- }
-
- function appendRound(digits) {
- const d = Math.floor(digits);
- if (!(d >= 0)) throw new RangeError(`invalid digits: ${digits}`);
- if (d > 15) return append;
- if (d !== cacheDigits) {
- const k = 10 ** d;
- cacheDigits = d;
- cacheAppend = function append(strings) {
- let i = 1;
- this._ += strings[0];
- for (const j = strings.length; i < j; ++i) {
- this._ += Math.round(arguments[i] * k) / k + strings[i];
- }
- };
- }
- return cacheAppend;
- }
-
- function index(projection, context) {
- let digits = 3,
- pointRadius = 4.5,
- projectionStream,
- contextStream;
-
- function path(object) {
- if (object) {
- if (typeof pointRadius === "function") contextStream.pointRadius(+pointRadius.apply(this, arguments));
- geoStream(object, projectionStream(contextStream));
- }
- return contextStream.result();
- }
-
- path.area = function(object) {
- geoStream(object, projectionStream(areaStream));
- return areaStream.result();
- };
-
- path.measure = function(object) {
- geoStream(object, projectionStream(lengthStream));
- return lengthStream.result();
- };
-
- path.bounds = function(object) {
- geoStream(object, projectionStream(boundsStream));
- return boundsStream.result();
- };
-
- path.centroid = function(object) {
- geoStream(object, projectionStream(centroidStream));
- return centroidStream.result();
- };
-
- path.projection = function(_) {
- if (!arguments.length) return projection;
- projectionStream = _ == null ? (projection = null, identity$1) : (projection = _).stream;
- return path;
- };
-
- path.context = function(_) {
- if (!arguments.length) return context;
- contextStream = _ == null ? (context = null, new PathString(digits)) : new PathContext(context = _);
- if (typeof pointRadius !== "function") contextStream.pointRadius(pointRadius);
- return path;
- };
-
- path.pointRadius = function(_) {
- if (!arguments.length) return pointRadius;
- pointRadius = typeof _ === "function" ? _ : (contextStream.pointRadius(+_), +_);
- return path;
- };
-
- path.digits = function(_) {
- if (!arguments.length) return digits;
- if (_ == null) digits = null;
- else {
- const d = Math.floor(_);
- if (!(d >= 0)) throw new RangeError(`invalid digits: ${_}`);
- digits = d;
- }
- if (context === null) contextStream = new PathString(digits);
- return path;
- };
-
- return path.projection(projection).digits(digits).context(context);
- }
-
- function transform(methods) {
- return {
- stream: transformer(methods)
- };
- }
-
- function transformer(methods) {
- return function(stream) {
- var s = new TransformStream;
- for (var key in methods) s[key] = methods[key];
- s.stream = stream;
- return s;
- };
- }
-
- function TransformStream() {}
-
- TransformStream.prototype = {
- constructor: TransformStream,
- point: function(x, y) { this.stream.point(x, y); },
- sphere: function() { this.stream.sphere(); },
- lineStart: function() { this.stream.lineStart(); },
- lineEnd: function() { this.stream.lineEnd(); },
- polygonStart: function() { this.stream.polygonStart(); },
- polygonEnd: function() { this.stream.polygonEnd(); }
- };
-
- function fit(projection, fitBounds, object) {
- var clip = projection.clipExtent && projection.clipExtent();
- projection.scale(150).translate([0, 0]);
- if (clip != null) projection.clipExtent(null);
- geoStream(object, projection.stream(boundsStream));
- fitBounds(boundsStream.result());
- if (clip != null) projection.clipExtent(clip);
- return projection;
- }
-
- function fitExtent(projection, extent, object) {
- return fit(projection, function(b) {
- var w = extent[1][0] - extent[0][0],
- h = extent[1][1] - extent[0][1],
- k = Math.min(w / (b[1][0] - b[0][0]), h / (b[1][1] - b[0][1])),
- x = +extent[0][0] + (w - k * (b[1][0] + b[0][0])) / 2,
- y = +extent[0][1] + (h - k * (b[1][1] + b[0][1])) / 2;
- projection.scale(150 * k).translate([x, y]);
- }, object);
- }
-
- function fitSize(projection, size, object) {
- return fitExtent(projection, [[0, 0], size], object);
- }
-
- function fitWidth(projection, width, object) {
- return fit(projection, function(b) {
- var w = +width,
- k = w / (b[1][0] - b[0][0]),
- x = (w - k * (b[1][0] + b[0][0])) / 2,
- y = -k * b[0][1];
- projection.scale(150 * k).translate([x, y]);
- }, object);
- }
-
- function fitHeight(projection, height, object) {
- return fit(projection, function(b) {
- var h = +height,
- k = h / (b[1][1] - b[0][1]),
- x = -k * b[0][0],
- y = (h - k * (b[1][1] + b[0][1])) / 2;
- projection.scale(150 * k).translate([x, y]);
- }, object);
- }
-
- var maxDepth = 16, // maximum depth of subdivision
- cosMinDistance = cos(30 * radians); // cos(minimum angular distance)
-
- function resample(project, delta2) {
- return +delta2 ? resample$1(project, delta2) : resampleNone(project);
- }
-
- function resampleNone(project) {
- return transformer({
- point: function(x, y) {
- x = project(x, y);
- this.stream.point(x[0], x[1]);
- }
- });
- }
-
- function resample$1(project, delta2) {
-
- function resampleLineTo(x0, y0, lambda0, a0, b0, c0, x1, y1, lambda1, a1, b1, c1, depth, stream) {
- var dx = x1 - x0,
- dy = y1 - y0,
- d2 = dx * dx + dy * dy;
- if (d2 > 4 * delta2 && depth--) {
- var a = a0 + a1,
- b = b0 + b1,
- c = c0 + c1,
- m = sqrt(a * a + b * b + c * c),
- phi2 = asin(c /= m),
- lambda2 = abs(abs(c) - 1) < epsilon || abs(lambda0 - lambda1) < epsilon ? (lambda0 + lambda1) / 2 : atan2(b, a),
- p = project(lambda2, phi2),
- x2 = p[0],
- y2 = p[1],
- dx2 = x2 - x0,
- dy2 = y2 - y0,
- dz = dy * dx2 - dx * dy2;
- if (dz * dz / d2 > delta2 // perpendicular projected distance
- || abs((dx * dx2 + dy * dy2) / d2 - 0.5) > 0.3 // midpoint close to an end
- || a0 * a1 + b0 * b1 + c0 * c1 < cosMinDistance) { // angular distance
- resampleLineTo(x0, y0, lambda0, a0, b0, c0, x2, y2, lambda2, a /= m, b /= m, c, depth, stream);
- stream.point(x2, y2);
- resampleLineTo(x2, y2, lambda2, a, b, c, x1, y1, lambda1, a1, b1, c1, depth, stream);
- }
- }
- }
- return function(stream) {
- var lambda00, x00, y00, a00, b00, c00, // first point
- lambda0, x0, y0, a0, b0, c0; // previous point
-
- var resampleStream = {
- point: point,
- lineStart: lineStart,
- lineEnd: lineEnd,
- polygonStart: function() { stream.polygonStart(); resampleStream.lineStart = ringStart; },
- polygonEnd: function() { stream.polygonEnd(); resampleStream.lineStart = lineStart; }
- };
-
- function point(x, y) {
- x = project(x, y);
- stream.point(x[0], x[1]);
- }
-
- function lineStart() {
- x0 = NaN;
- resampleStream.point = linePoint;
- stream.lineStart();
- }
-
- function linePoint(lambda, phi) {
- var c = cartesian([lambda, phi]), p = project(lambda, phi);
- resampleLineTo(x0, y0, lambda0, a0, b0, c0, x0 = p[0], y0 = p[1], lambda0 = lambda, a0 = c[0], b0 = c[1], c0 = c[2], maxDepth, stream);
- stream.point(x0, y0);
- }
-
- function lineEnd() {
- resampleStream.point = point;
- stream.lineEnd();
- }
-
- function ringStart() {
- lineStart();
- resampleStream.point = ringPoint;
- resampleStream.lineEnd = ringEnd;
- }
-
- function ringPoint(lambda, phi) {
- linePoint(lambda00 = lambda, phi), x00 = x0, y00 = y0, a00 = a0, b00 = b0, c00 = c0;
- resampleStream.point = linePoint;
- }
-
- function ringEnd() {
- resampleLineTo(x0, y0, lambda0, a0, b0, c0, x00, y00, lambda00, a00, b00, c00, maxDepth, stream);
- resampleStream.lineEnd = lineEnd;
- lineEnd();
- }
-
- return resampleStream;
- };
- }
-
- var transformRadians = transformer({
- point: function(x, y) {
- this.stream.point(x * radians, y * radians);
- }
- });
-
- function transformRotate(rotate) {
- return transformer({
- point: function(x, y) {
- var r = rotate(x, y);
- return this.stream.point(r[0], r[1]);
- }
- });
- }
-
- function scaleTranslate(k, dx, dy, sx, sy) {
- function transform(x, y) {
- x *= sx; y *= sy;
- return [dx + k * x, dy - k * y];
- }
- transform.invert = function(x, y) {
- return [(x - dx) / k * sx, (dy - y) / k * sy];
- };
- return transform;
- }
-
- function scaleTranslateRotate(k, dx, dy, sx, sy, alpha) {
- if (!alpha) return scaleTranslate(k, dx, dy, sx, sy);
- var cosAlpha = cos(alpha),
- sinAlpha = sin(alpha),
- a = cosAlpha * k,
- b = sinAlpha * k,
- ai = cosAlpha / k,
- bi = sinAlpha / k,
- ci = (sinAlpha * dy - cosAlpha * dx) / k,
- fi = (sinAlpha * dx + cosAlpha * dy) / k;
- function transform(x, y) {
- x *= sx; y *= sy;
- return [a * x - b * y + dx, dy - b * x - a * y];
- }
- transform.invert = function(x, y) {
- return [sx * (ai * x - bi * y + ci), sy * (fi - bi * x - ai * y)];
- };
- return transform;
- }
-
- function projection(project) {
- return projectionMutator(function() { return project; })();
- }
-
- function projectionMutator(projectAt) {
- var project,
- k = 150, // scale
- x = 480, y = 250, // translate
- lambda = 0, phi = 0, // center
- deltaLambda = 0, deltaPhi = 0, deltaGamma = 0, rotate, // pre-rotate
- alpha = 0, // post-rotate angle
- sx = 1, // reflectX
- sy = 1, // reflectX
- theta = null, preclip = clipAntimeridian, // pre-clip angle
- x0 = null, y0, x1, y1, postclip = identity$1, // post-clip extent
- delta2 = 0.5, // precision
- projectResample,
- projectTransform,
- projectRotateTransform,
- cache,
- cacheStream;
-
- function projection(point) {
- return projectRotateTransform(point[0] * radians, point[1] * radians);
- }
-
- function invert(point) {
- point = projectRotateTransform.invert(point[0], point[1]);
- return point && [point[0] * degrees, point[1] * degrees];
- }
-
- projection.stream = function(stream) {
- return cache && cacheStream === stream ? cache : cache = transformRadians(transformRotate(rotate)(preclip(projectResample(postclip(cacheStream = stream)))));
- };
-
- projection.preclip = function(_) {
- return arguments.length ? (preclip = _, theta = undefined, reset()) : preclip;
- };
-
- projection.postclip = function(_) {
- return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;
- };
-
- projection.clipAngle = function(_) {
- return arguments.length ? (preclip = +_ ? clipCircle(theta = _ * radians) : (theta = null, clipAntimeridian), reset()) : theta * degrees;
- };
-
- projection.clipExtent = function(_) {
- return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity$1) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
- };
-
- projection.scale = function(_) {
- return arguments.length ? (k = +_, recenter()) : k;
- };
-
- projection.translate = function(_) {
- return arguments.length ? (x = +_[0], y = +_[1], recenter()) : [x, y];
- };
-
- projection.center = function(_) {
- return arguments.length ? (lambda = _[0] % 360 * radians, phi = _[1] % 360 * radians, recenter()) : [lambda * degrees, phi * degrees];
- };
-
- projection.rotate = function(_) {
- return arguments.length ? (deltaLambda = _[0] % 360 * radians, deltaPhi = _[1] % 360 * radians, deltaGamma = _.length > 2 ? _[2] % 360 * radians : 0, recenter()) : [deltaLambda * degrees, deltaPhi * degrees, deltaGamma * degrees];
- };
-
- projection.angle = function(_) {
- return arguments.length ? (alpha = _ % 360 * radians, recenter()) : alpha * degrees;
- };
-
- projection.reflectX = function(_) {
- return arguments.length ? (sx = _ ? -1 : 1, recenter()) : sx < 0;
- };
-
- projection.reflectY = function(_) {
- return arguments.length ? (sy = _ ? -1 : 1, recenter()) : sy < 0;
- };
-
- projection.precision = function(_) {
- return arguments.length ? (projectResample = resample(projectTransform, delta2 = _ * _), reset()) : sqrt(delta2);
- };
-
- projection.fitExtent = function(extent, object) {
- return fitExtent(projection, extent, object);
- };
-
- projection.fitSize = function(size, object) {
- return fitSize(projection, size, object);
- };
-
- projection.fitWidth = function(width, object) {
- return fitWidth(projection, width, object);
- };
-
- projection.fitHeight = function(height, object) {
- return fitHeight(projection, height, object);
- };
-
- function recenter() {
- var center = scaleTranslateRotate(k, 0, 0, sx, sy, alpha).apply(null, project(lambda, phi)),
- transform = scaleTranslateRotate(k, x - center[0], y - center[1], sx, sy, alpha);
- rotate = rotateRadians(deltaLambda, deltaPhi, deltaGamma);
- projectTransform = compose(project, transform);
- projectRotateTransform = compose(rotate, projectTransform);
- projectResample = resample(projectTransform, delta2);
- return reset();
- }
-
- function reset() {
- cache = cacheStream = null;
- return projection;
- }
-
- return function() {
- project = projectAt.apply(this, arguments);
- projection.invert = project.invert && invert;
- return recenter();
- };
- }
-
- function conicProjection(projectAt) {
- var phi0 = 0,
- phi1 = pi / 3,
- m = projectionMutator(projectAt),
- p = m(phi0, phi1);
-
- p.parallels = function(_) {
- return arguments.length ? m(phi0 = _[0] * radians, phi1 = _[1] * radians) : [phi0 * degrees, phi1 * degrees];
- };
-
- return p;
- }
-
- function cylindricalEqualAreaRaw(phi0) {
- var cosPhi0 = cos(phi0);
-
- function forward(lambda, phi) {
- return [lambda * cosPhi0, sin(phi) / cosPhi0];
- }
-
- forward.invert = function(x, y) {
- return [x / cosPhi0, asin(y * cosPhi0)];
- };
-
- return forward;
- }
-
- function conicEqualAreaRaw(y0, y1) {
- var sy0 = sin(y0), n = (sy0 + sin(y1)) / 2;
-
- // Are the parallels symmetrical around the Equator?
- if (abs(n) < epsilon) return cylindricalEqualAreaRaw(y0);
-
- var c = 1 + sy0 * (2 * n - sy0), r0 = sqrt(c) / n;
-
- function project(x, y) {
- var r = sqrt(c - 2 * n * sin(y)) / n;
- return [r * sin(x *= n), r0 - r * cos(x)];
- }
-
- project.invert = function(x, y) {
- var r0y = r0 - y,
- l = atan2(x, abs(r0y)) * sign(r0y);
- if (r0y * n < 0)
- l -= pi * sign(x) * sign(r0y);
- return [l / n, asin((c - (x * x + r0y * r0y) * n * n) / (2 * n))];
- };
-
- return project;
- }
-
- function conicEqualArea() {
- return conicProjection(conicEqualAreaRaw)
- .scale(155.424)
- .center([0, 33.6442]);
- }
-
- function albers() {
- return conicEqualArea()
- .parallels([29.5, 45.5])
- .scale(1070)
- .translate([480, 250])
- .rotate([96, 0])
- .center([-0.6, 38.7]);
- }
-
- // The projections must have mutually exclusive clip regions on the sphere,
- // as this will avoid emitting interleaving lines and polygons.
- function multiplex(streams) {
- var n = streams.length;
- return {
- point: function(x, y) { var i = -1; while (++i < n) streams[i].point(x, y); },
- sphere: function() { var i = -1; while (++i < n) streams[i].sphere(); },
- lineStart: function() { var i = -1; while (++i < n) streams[i].lineStart(); },
- lineEnd: function() { var i = -1; while (++i < n) streams[i].lineEnd(); },
- polygonStart: function() { var i = -1; while (++i < n) streams[i].polygonStart(); },
- polygonEnd: function() { var i = -1; while (++i < n) streams[i].polygonEnd(); }
- };
- }
-
- // A composite projection for the United States, configured by default for
- // 960×500. The projection also works quite well at 960×600 if you change the
- // scale to 1285 and adjust the translate accordingly. The set of standard
- // parallels for each region comes from USGS, which is published here:
- // http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers
- function albersUsa() {
- var cache,
- cacheStream,
- lower48 = albers(), lower48Point,
- alaska = conicEqualArea().rotate([154, 0]).center([-2, 58.5]).parallels([55, 65]), alaskaPoint, // EPSG:3338
- hawaii = conicEqualArea().rotate([157, 0]).center([-3, 19.9]).parallels([8, 18]), hawaiiPoint, // ESRI:102007
- point, pointStream = {point: function(x, y) { point = [x, y]; }};
-
- function albersUsa(coordinates) {
- var x = coordinates[0], y = coordinates[1];
- return point = null,
- (lower48Point.point(x, y), point)
- || (alaskaPoint.point(x, y), point)
- || (hawaiiPoint.point(x, y), point);
- }
-
- albersUsa.invert = function(coordinates) {
- var k = lower48.scale(),
- t = lower48.translate(),
- x = (coordinates[0] - t[0]) / k,
- y = (coordinates[1] - t[1]) / k;
- return (y >= 0.120 && y < 0.234 && x >= -0.425 && x < -0.214 ? alaska
- : y >= 0.166 && y < 0.234 && x >= -0.214 && x < -0.115 ? hawaii
- : lower48).invert(coordinates);
- };
-
- albersUsa.stream = function(stream) {
- return cache && cacheStream === stream ? cache : cache = multiplex([lower48.stream(cacheStream = stream), alaska.stream(stream), hawaii.stream(stream)]);
- };
-
- albersUsa.precision = function(_) {
- if (!arguments.length) return lower48.precision();
- lower48.precision(_), alaska.precision(_), hawaii.precision(_);
- return reset();
- };
-
- albersUsa.scale = function(_) {
- if (!arguments.length) return lower48.scale();
- lower48.scale(_), alaska.scale(_ * 0.35), hawaii.scale(_);
- return albersUsa.translate(lower48.translate());
- };
-
- albersUsa.translate = function(_) {
- if (!arguments.length) return lower48.translate();
- var k = lower48.scale(), x = +_[0], y = +_[1];
-
- lower48Point = lower48
- .translate(_)
- .clipExtent([[x - 0.455 * k, y - 0.238 * k], [x + 0.455 * k, y + 0.238 * k]])
- .stream(pointStream);
-
- alaskaPoint = alaska
- .translate([x - 0.307 * k, y + 0.201 * k])
- .clipExtent([[x - 0.425 * k + epsilon, y + 0.120 * k + epsilon], [x - 0.214 * k - epsilon, y + 0.234 * k - epsilon]])
- .stream(pointStream);
-
- hawaiiPoint = hawaii
- .translate([x - 0.205 * k, y + 0.212 * k])
- .clipExtent([[x - 0.214 * k + epsilon, y + 0.166 * k + epsilon], [x - 0.115 * k - epsilon, y + 0.234 * k - epsilon]])
- .stream(pointStream);
-
- return reset();
- };
-
- albersUsa.fitExtent = function(extent, object) {
- return fitExtent(albersUsa, extent, object);
- };
-
- albersUsa.fitSize = function(size, object) {
- return fitSize(albersUsa, size, object);
- };
-
- albersUsa.fitWidth = function(width, object) {
- return fitWidth(albersUsa, width, object);
- };
-
- albersUsa.fitHeight = function(height, object) {
- return fitHeight(albersUsa, height, object);
- };
-
- function reset() {
- cache = cacheStream = null;
- return albersUsa;
- }
-
- return albersUsa.scale(1070);
- }
-
- function azimuthalRaw(scale) {
- return function(x, y) {
- var cx = cos(x),
- cy = cos(y),
- k = scale(cx * cy);
- if (k === Infinity) return [2, 0];
- return [
- k * cy * sin(x),
- k * sin(y)
- ];
- }
- }
-
- function azimuthalInvert(angle) {
- return function(x, y) {
- var z = sqrt(x * x + y * y),
- c = angle(z),
- sc = sin(c),
- cc = cos(c);
- return [
- atan2(x * sc, z * cc),
- asin(z && y * sc / z)
- ];
- }
- }
-
- var azimuthalEqualAreaRaw = azimuthalRaw(function(cxcy) {
- return sqrt(2 / (1 + cxcy));
- });
-
- azimuthalEqualAreaRaw.invert = azimuthalInvert(function(z) {
- return 2 * asin(z / 2);
- });
-
- function azimuthalEqualArea() {
- return projection(azimuthalEqualAreaRaw)
- .scale(124.75)
- .clipAngle(180 - 1e-3);
- }
-
- var azimuthalEquidistantRaw = azimuthalRaw(function(c) {
- return (c = acos(c)) && c / sin(c);
- });
-
- azimuthalEquidistantRaw.invert = azimuthalInvert(function(z) {
- return z;
- });
-
- function azimuthalEquidistant() {
- return projection(azimuthalEquidistantRaw)
- .scale(79.4188)
- .clipAngle(180 - 1e-3);
- }
-
- function mercatorRaw(lambda, phi) {
- return [lambda, log(tan((halfPi + phi) / 2))];
- }
-
- mercatorRaw.invert = function(x, y) {
- return [x, 2 * atan(exp(y)) - halfPi];
- };
-
- function mercator() {
- return mercatorProjection(mercatorRaw)
- .scale(961 / tau);
- }
-
- function mercatorProjection(project) {
- var m = projection(project),
- center = m.center,
- scale = m.scale,
- translate = m.translate,
- clipExtent = m.clipExtent,
- x0 = null, y0, x1, y1; // clip extent
-
- m.scale = function(_) {
- return arguments.length ? (scale(_), reclip()) : scale();
- };
-
- m.translate = function(_) {
- return arguments.length ? (translate(_), reclip()) : translate();
- };
-
- m.center = function(_) {
- return arguments.length ? (center(_), reclip()) : center();
- };
-
- m.clipExtent = function(_) {
- return arguments.length ? ((_ == null ? x0 = y0 = x1 = y1 = null : (x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1])), reclip()) : x0 == null ? null : [[x0, y0], [x1, y1]];
- };
-
- function reclip() {
- var k = pi * scale(),
- t = m(rotation(m.rotate()).invert([0, 0]));
- return clipExtent(x0 == null
- ? [[t[0] - k, t[1] - k], [t[0] + k, t[1] + k]] : project === mercatorRaw
- ? [[Math.max(t[0] - k, x0), y0], [Math.min(t[0] + k, x1), y1]]
- : [[x0, Math.max(t[1] - k, y0)], [x1, Math.min(t[1] + k, y1)]]);
- }
-
- return reclip();
- }
-
- function tany(y) {
- return tan((halfPi + y) / 2);
- }
-
- function conicConformalRaw(y0, y1) {
- var cy0 = cos(y0),
- n = y0 === y1 ? sin(y0) : log(cy0 / cos(y1)) / log(tany(y1) / tany(y0)),
- f = cy0 * pow(tany(y0), n) / n;
-
- if (!n) return mercatorRaw;
-
- function project(x, y) {
- if (f > 0) { if (y < -halfPi + epsilon) y = -halfPi + epsilon; }
- else { if (y > halfPi - epsilon) y = halfPi - epsilon; }
- var r = f / pow(tany(y), n);
- return [r * sin(n * x), f - r * cos(n * x)];
- }
-
- project.invert = function(x, y) {
- var fy = f - y, r = sign(n) * sqrt(x * x + fy * fy),
- l = atan2(x, abs(fy)) * sign(fy);
- if (fy * n < 0)
- l -= pi * sign(x) * sign(fy);
- return [l / n, 2 * atan(pow(f / r, 1 / n)) - halfPi];
- };
-
- return project;
- }
-
- function conicConformal() {
- return conicProjection(conicConformalRaw)
- .scale(109.5)
- .parallels([30, 30]);
- }
-
- function equirectangularRaw(lambda, phi) {
- return [lambda, phi];
- }
-
- equirectangularRaw.invert = equirectangularRaw;
-
- function equirectangular() {
- return projection(equirectangularRaw)
- .scale(152.63);
- }
-
- function conicEquidistantRaw(y0, y1) {
- var cy0 = cos(y0),
- n = y0 === y1 ? sin(y0) : (cy0 - cos(y1)) / (y1 - y0),
- g = cy0 / n + y0;
-
- if (abs(n) < epsilon) return equirectangularRaw;
-
- function project(x, y) {
- var gy = g - y, nx = n * x;
- return [gy * sin(nx), g - gy * cos(nx)];
- }
-
- project.invert = function(x, y) {
- var gy = g - y,
- l = atan2(x, abs(gy)) * sign(gy);
- if (gy * n < 0)
- l -= pi * sign(x) * sign(gy);
- return [l / n, g - sign(n) * sqrt(x * x + gy * gy)];
- };
-
- return project;
- }
-
- function conicEquidistant() {
- return conicProjection(conicEquidistantRaw)
- .scale(131.154)
- .center([0, 13.9389]);
- }
-
- var A1 = 1.340264,
- A2 = -0.081106,
- A3 = 0.000893,
- A4 = 0.003796,
- M = sqrt(3) / 2,
- iterations = 12;
-
- function equalEarthRaw(lambda, phi) {
- var l = asin(M * sin(phi)), l2 = l * l, l6 = l2 * l2 * l2;
- return [
- lambda * cos(l) / (M * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2))),
- l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2))
- ];
- }
-
- equalEarthRaw.invert = function(x, y) {
- var l = y, l2 = l * l, l6 = l2 * l2 * l2;
- for (var i = 0, delta, fy, fpy; i < iterations; ++i) {
- fy = l * (A1 + A2 * l2 + l6 * (A3 + A4 * l2)) - y;
- fpy = A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2);
- l -= delta = fy / fpy, l2 = l * l, l6 = l2 * l2 * l2;
- if (abs(delta) < epsilon2) break;
- }
- return [
- M * x * (A1 + 3 * A2 * l2 + l6 * (7 * A3 + 9 * A4 * l2)) / cos(l),
- asin(sin(l) / M)
- ];
- };
-
- function equalEarth() {
- return projection(equalEarthRaw)
- .scale(177.158);
- }
-
- function gnomonicRaw(x, y) {
- var cy = cos(y), k = cos(x) * cy;
- return [cy * sin(x) / k, sin(y) / k];
- }
-
- gnomonicRaw.invert = azimuthalInvert(atan);
-
- function gnomonic() {
- return projection(gnomonicRaw)
- .scale(144.049)
- .clipAngle(60);
- }
-
- function identity() {
- var k = 1, tx = 0, ty = 0, sx = 1, sy = 1, // scale, translate and reflect
- alpha = 0, ca, sa, // angle
- x0 = null, y0, x1, y1, // clip extent
- kx = 1, ky = 1,
- transform = transformer({
- point: function(x, y) {
- var p = projection([x, y]);
- this.stream.point(p[0], p[1]);
- }
- }),
- postclip = identity$1,
- cache,
- cacheStream;
-
- function reset() {
- kx = k * sx;
- ky = k * sy;
- cache = cacheStream = null;
- return projection;
- }
-
- function projection (p) {
- var x = p[0] * kx, y = p[1] * ky;
- if (alpha) {
- var t = y * ca - x * sa;
- x = x * ca + y * sa;
- y = t;
- }
- return [x + tx, y + ty];
- }
- projection.invert = function(p) {
- var x = p[0] - tx, y = p[1] - ty;
- if (alpha) {
- var t = y * ca + x * sa;
- x = x * ca - y * sa;
- y = t;
- }
- return [x / kx, y / ky];
- };
- projection.stream = function(stream) {
- return cache && cacheStream === stream ? cache : cache = transform(postclip(cacheStream = stream));
- };
- projection.postclip = function(_) {
- return arguments.length ? (postclip = _, x0 = y0 = x1 = y1 = null, reset()) : postclip;
- };
- projection.clipExtent = function(_) {
- return arguments.length ? (postclip = _ == null ? (x0 = y0 = x1 = y1 = null, identity$1) : clipRectangle(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]), reset()) : x0 == null ? null : [[x0, y0], [x1, y1]];
- };
- projection.scale = function(_) {
- return arguments.length ? (k = +_, reset()) : k;
- };
- projection.translate = function(_) {
- return arguments.length ? (tx = +_[0], ty = +_[1], reset()) : [tx, ty];
- };
- projection.angle = function(_) {
- return arguments.length ? (alpha = _ % 360 * radians, sa = sin(alpha), ca = cos(alpha), reset()) : alpha * degrees;
- };
- projection.reflectX = function(_) {
- return arguments.length ? (sx = _ ? -1 : 1, reset()) : sx < 0;
- };
- projection.reflectY = function(_) {
- return arguments.length ? (sy = _ ? -1 : 1, reset()) : sy < 0;
- };
- projection.fitExtent = function(extent, object) {
- return fitExtent(projection, extent, object);
- };
- projection.fitSize = function(size, object) {
- return fitSize(projection, size, object);
- };
- projection.fitWidth = function(width, object) {
- return fitWidth(projection, width, object);
- };
- projection.fitHeight = function(height, object) {
- return fitHeight(projection, height, object);
- };
-
- return projection;
- }
-
- function naturalEarth1Raw(lambda, phi) {
- var phi2 = phi * phi, phi4 = phi2 * phi2;
- return [
- lambda * (0.8707 - 0.131979 * phi2 + phi4 * (-0.013791 + phi4 * (0.003971 * phi2 - 0.001529 * phi4))),
- phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4)))
- ];
- }
-
- naturalEarth1Raw.invert = function(x, y) {
- var phi = y, i = 25, delta;
- do {
- var phi2 = phi * phi, phi4 = phi2 * phi2;
- phi -= delta = (phi * (1.007226 + phi2 * (0.015085 + phi4 * (-0.044475 + 0.028874 * phi2 - 0.005916 * phi4))) - y) /
- (1.007226 + phi2 * (0.015085 * 3 + phi4 * (-0.044475 * 7 + 0.028874 * 9 * phi2 - 0.005916 * 11 * phi4)));
- } while (abs(delta) > epsilon && --i > 0);
- return [
- x / (0.8707 + (phi2 = phi * phi) * (-0.131979 + phi2 * (-0.013791 + phi2 * phi2 * phi2 * (0.003971 - 0.001529 * phi2)))),
- phi
- ];
- };
-
- function naturalEarth1() {
- return projection(naturalEarth1Raw)
- .scale(175.295);
- }
-
- function orthographicRaw(x, y) {
- return [cos(y) * sin(x), sin(y)];
- }
-
- orthographicRaw.invert = azimuthalInvert(asin);
-
- function orthographic() {
- return projection(orthographicRaw)
- .scale(249.5)
- .clipAngle(90 + epsilon);
- }
-
- function stereographicRaw(x, y) {
- var cy = cos(y), k = 1 + cos(x) * cy;
- return [cy * sin(x) / k, sin(y) / k];
- }
-
- stereographicRaw.invert = azimuthalInvert(function(z) {
- return 2 * atan(z);
- });
-
- function stereographic() {
- return projection(stereographicRaw)
- .scale(250)
- .clipAngle(142);
- }
-
- function transverseMercatorRaw(lambda, phi) {
- return [log(tan((halfPi + phi) / 2)), -lambda];
- }
-
- transverseMercatorRaw.invert = function(x, y) {
- return [-y, 2 * atan(exp(x)) - halfPi];
- };
-
- function transverseMercator() {
- var m = mercatorProjection(transverseMercatorRaw),
- center = m.center,
- rotate = m.rotate;
-
- m.center = function(_) {
- return arguments.length ? center([-_[1], _[0]]) : (_ = center(), [_[1], -_[0]]);
- };
-
- m.rotate = function(_) {
- return arguments.length ? rotate([_[0], _[1], _.length > 2 ? _[2] + 90 : 90]) : (_ = rotate(), [_[0], _[1], _[2] - 90]);
- };
-
- return rotate([0, 0, 90])
- .scale(159.155);
- }
-
- exports.geoAlbers = albers;
- exports.geoAlbersUsa = albersUsa;
- exports.geoArea = area;
- exports.geoAzimuthalEqualArea = azimuthalEqualArea;
- exports.geoAzimuthalEqualAreaRaw = azimuthalEqualAreaRaw;
- exports.geoAzimuthalEquidistant = azimuthalEquidistant;
- exports.geoAzimuthalEquidistantRaw = azimuthalEquidistantRaw;
- exports.geoBounds = bounds;
- exports.geoCentroid = centroid;
- exports.geoCircle = circle;
- exports.geoClipAntimeridian = clipAntimeridian;
- exports.geoClipCircle = clipCircle;
- exports.geoClipExtent = extent;
- exports.geoClipRectangle = clipRectangle;
- exports.geoConicConformal = conicConformal;
- exports.geoConicConformalRaw = conicConformalRaw;
- exports.geoConicEqualArea = conicEqualArea;
- exports.geoConicEqualAreaRaw = conicEqualAreaRaw;
- exports.geoConicEquidistant = conicEquidistant;
- exports.geoConicEquidistantRaw = conicEquidistantRaw;
- exports.geoContains = contains;
- exports.geoDistance = distance;
- exports.geoEqualEarth = equalEarth;
- exports.geoEqualEarthRaw = equalEarthRaw;
- exports.geoEquirectangular = equirectangular;
- exports.geoEquirectangularRaw = equirectangularRaw;
- exports.geoGnomonic = gnomonic;
- exports.geoGnomonicRaw = gnomonicRaw;
- exports.geoGraticule = graticule;
- exports.geoGraticule10 = graticule10;
- exports.geoIdentity = identity;
- exports.geoInterpolate = interpolate;
- exports.geoLength = length;
- exports.geoMercator = mercator;
- exports.geoMercatorRaw = mercatorRaw;
- exports.geoNaturalEarth1 = naturalEarth1;
- exports.geoNaturalEarth1Raw = naturalEarth1Raw;
- exports.geoOrthographic = orthographic;
- exports.geoOrthographicRaw = orthographicRaw;
- exports.geoPath = index;
- exports.geoProjection = projection;
- exports.geoProjectionMutator = projectionMutator;
- exports.geoRotation = rotation;
- exports.geoStereographic = stereographic;
- exports.geoStereographicRaw = stereographicRaw;
- exports.geoStream = geoStream;
- exports.geoTransform = transform;
- exports.geoTransverseMercator = transverseMercator;
- exports.geoTransverseMercatorRaw = transverseMercatorRaw;
-
- }));
|