1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- import {Adder} from "d3-array";
- import {cartesian, cartesianCross, cartesianNormalizeInPlace} from "./cartesian.js";
- import {abs, asin, atan2, cos, epsilon, epsilon2, halfPi, pi, quarterPi, sign, sin, tau} from "./math.js";
-
- function longitude(point) {
- return abs(point[0]) <= pi ? point[0] : sign(point[0]) * ((abs(point[0]) + pi) % tau - pi);
- }
-
- export default function(polygon, point) {
- var lambda = longitude(point),
- phi = point[1],
- sinPhi = sin(phi),
- normal = [sin(lambda), -cos(lambda), 0],
- angle = 0,
- winding = 0;
-
- var sum = new Adder();
-
- if (sinPhi === 1) phi = halfPi + epsilon;
- else if (sinPhi === -1) phi = -halfPi - epsilon;
-
- for (var i = 0, n = polygon.length; i < n; ++i) {
- if (!(m = (ring = polygon[i]).length)) continue;
- var ring,
- m,
- point0 = ring[m - 1],
- lambda0 = longitude(point0),
- phi0 = point0[1] / 2 + quarterPi,
- sinPhi0 = sin(phi0),
- cosPhi0 = cos(phi0);
-
- for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
- var point1 = ring[j],
- lambda1 = longitude(point1),
- phi1 = point1[1] / 2 + quarterPi,
- sinPhi1 = sin(phi1),
- cosPhi1 = cos(phi1),
- delta = lambda1 - lambda0,
- sign = delta >= 0 ? 1 : -1,
- absDelta = sign * delta,
- antimeridian = absDelta > pi,
- k = sinPhi0 * sinPhi1;
-
- sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));
- angle += antimeridian ? delta + sign * tau : delta;
-
- // Are the longitudes either side of the point’s meridian (lambda),
- // and are the latitudes smaller than the parallel (phi)?
- if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
- var arc = cartesianCross(cartesian(point0), cartesian(point1));
- cartesianNormalizeInPlace(arc);
- var intersection = cartesianCross(normal, arc);
- cartesianNormalizeInPlace(intersection);
- var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);
- if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
- winding += antimeridian ^ delta >= 0 ? 1 : -1;
- }
- }
- }
- }
-
- // First, determine whether the South pole is inside or outside:
- //
- // It is inside if:
- // * the polygon winds around it in a clockwise direction.
- // * the polygon does not (cumulatively) wind around it, but has a negative
- // (counter-clockwise) area.
- //
- // Second, count the (signed) number of times a segment crosses a lambda
- // from the point to the South pole. If it is zero, then the point is the
- // same side as the South pole.
-
- return (angle < -epsilon || angle < epsilon && sum < -epsilon2) ^ (winding & 1);
- }
|