123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- // https://d3js.org/d3-path/ v3.1.0 Copyright 2015-2022 Mike Bostock
- (function (global, factory) {
- typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
- typeof define === 'function' && define.amd ? define(['exports'], factory) :
- (global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global.d3 = global.d3 || {}));
- })(this, (function (exports) { 'use strict';
-
- const pi = Math.PI,
- tau = 2 * pi,
- epsilon = 1e-6,
- tauEpsilon = tau - epsilon;
-
- function append(strings) {
- this._ += strings[0];
- for (let i = 1, n = strings.length; i < n; ++i) {
- this._ += arguments[i] + strings[i];
- }
- }
-
- function appendRound(digits) {
- let d = Math.floor(digits);
- if (!(d >= 0)) throw new Error(`invalid digits: ${digits}`);
- if (d > 15) return append;
- const k = 10 ** d;
- return function(strings) {
- this._ += strings[0];
- for (let i = 1, n = strings.length; i < n; ++i) {
- this._ += Math.round(arguments[i] * k) / k + strings[i];
- }
- };
- }
-
- class Path {
- constructor(digits) {
- this._x0 = this._y0 = // start of current subpath
- this._x1 = this._y1 = null; // end of current subpath
- this._ = "";
- this._append = digits == null ? append : appendRound(digits);
- }
- moveTo(x, y) {
- this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}`;
- }
- closePath() {
- if (this._x1 !== null) {
- this._x1 = this._x0, this._y1 = this._y0;
- this._append`Z`;
- }
- }
- lineTo(x, y) {
- this._append`L${this._x1 = +x},${this._y1 = +y}`;
- }
- quadraticCurveTo(x1, y1, x, y) {
- this._append`Q${+x1},${+y1},${this._x1 = +x},${this._y1 = +y}`;
- }
- bezierCurveTo(x1, y1, x2, y2, x, y) {
- this._append`C${+x1},${+y1},${+x2},${+y2},${this._x1 = +x},${this._y1 = +y}`;
- }
- arcTo(x1, y1, x2, y2, r) {
- x1 = +x1, y1 = +y1, x2 = +x2, y2 = +y2, r = +r;
-
- // Is the radius negative? Error.
- if (r < 0) throw new Error(`negative radius: ${r}`);
-
- let x0 = this._x1,
- y0 = this._y1,
- x21 = x2 - x1,
- y21 = y2 - y1,
- x01 = x0 - x1,
- y01 = y0 - y1,
- l01_2 = x01 * x01 + y01 * y01;
-
- // Is this path empty? Move to (x1,y1).
- if (this._x1 === null) {
- this._append`M${this._x1 = x1},${this._y1 = y1}`;
- }
-
- // Or, is (x1,y1) coincident with (x0,y0)? Do nothing.
- else if (!(l01_2 > epsilon));
-
- // Or, are (x0,y0), (x1,y1) and (x2,y2) collinear?
- // Equivalently, is (x1,y1) coincident with (x2,y2)?
- // Or, is the radius zero? Line to (x1,y1).
- else if (!(Math.abs(y01 * x21 - y21 * x01) > epsilon) || !r) {
- this._append`L${this._x1 = x1},${this._y1 = y1}`;
- }
-
- // Otherwise, draw an arc!
- else {
- let x20 = x2 - x0,
- y20 = y2 - y0,
- l21_2 = x21 * x21 + y21 * y21,
- l20_2 = x20 * x20 + y20 * y20,
- l21 = Math.sqrt(l21_2),
- l01 = Math.sqrt(l01_2),
- l = r * Math.tan((pi - Math.acos((l21_2 + l01_2 - l20_2) / (2 * l21 * l01))) / 2),
- t01 = l / l01,
- t21 = l / l21;
-
- // If the start tangent is not coincident with (x0,y0), line to.
- if (Math.abs(t01 - 1) > epsilon) {
- this._append`L${x1 + t01 * x01},${y1 + t01 * y01}`;
- }
-
- this._append`A${r},${r},0,0,${+(y01 * x20 > x01 * y20)},${this._x1 = x1 + t21 * x21},${this._y1 = y1 + t21 * y21}`;
- }
- }
- arc(x, y, r, a0, a1, ccw) {
- x = +x, y = +y, r = +r, ccw = !!ccw;
-
- // Is the radius negative? Error.
- if (r < 0) throw new Error(`negative radius: ${r}`);
-
- let dx = r * Math.cos(a0),
- dy = r * Math.sin(a0),
- x0 = x + dx,
- y0 = y + dy,
- cw = 1 ^ ccw,
- da = ccw ? a0 - a1 : a1 - a0;
-
- // Is this path empty? Move to (x0,y0).
- if (this._x1 === null) {
- this._append`M${x0},${y0}`;
- }
-
- // Or, is (x0,y0) not coincident with the previous point? Line to (x0,y0).
- else if (Math.abs(this._x1 - x0) > epsilon || Math.abs(this._y1 - y0) > epsilon) {
- this._append`L${x0},${y0}`;
- }
-
- // Is this arc empty? We’re done.
- if (!r) return;
-
- // Does the angle go the wrong way? Flip the direction.
- if (da < 0) da = da % tau + tau;
-
- // Is this a complete circle? Draw two arcs to complete the circle.
- if (da > tauEpsilon) {
- this._append`A${r},${r},0,1,${cw},${x - dx},${y - dy}A${r},${r},0,1,${cw},${this._x1 = x0},${this._y1 = y0}`;
- }
-
- // Is this arc non-empty? Draw an arc!
- else if (da > epsilon) {
- this._append`A${r},${r},0,${+(da >= pi)},${cw},${this._x1 = x + r * Math.cos(a1)},${this._y1 = y + r * Math.sin(a1)}`;
- }
- }
- rect(x, y, w, h) {
- this._append`M${this._x0 = this._x1 = +x},${this._y0 = this._y1 = +y}h${w = +w}v${+h}h${-w}Z`;
- }
- toString() {
- return this._;
- }
- }
-
- function path() {
- return new Path;
- }
-
- // Allow instanceof d3.path
- path.prototype = Path.prototype;
-
- function pathRound(digits = 3) {
- return new Path(+digits);
- }
-
- exports.Path = Path;
- exports.path = path;
- exports.pathRound = pathRound;
-
- }));
|