123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317 |
- /*
- (c) 2011-2015, Vladimir Agafonkin
- SunCalc is a JavaScript library for calculating sun/moon position and light phases.
- https://github.com/mourner/suncalc
- */
-
- (function () { 'use strict';
-
- // shortcuts for easier to read formulas
-
- var PI = Math.PI,
- sin = Math.sin,
- cos = Math.cos,
- tan = Math.tan,
- asin = Math.asin,
- atan = Math.atan2,
- acos = Math.acos,
- rad = PI / 180;
-
- // sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
-
-
- // date/time constants and conversions
-
- var dayMs = 1000 * 60 * 60 * 24,
- J1970 = 2440588,
- J2000 = 2451545;
-
- function toJulian(date) { return date.valueOf() / dayMs - 0.5 + J1970; }
- function fromJulian(j) { return new Date((j + 0.5 - J1970) * dayMs); }
- function toDays(date) { return toJulian(date) - J2000; }
-
-
- // general calculations for position
-
- var e = rad * 23.4397; // obliquity of the Earth
-
- function rightAscension(l, b) { return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l)); }
- function declination(l, b) { return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l)); }
-
- function azimuth(H, phi, dec) { return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi)); }
- function altitude(H, phi, dec) { return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H)); }
-
- function siderealTime(d, lw) { return rad * (280.16 + 360.9856235 * d) - lw; }
-
- function astroRefraction(h) {
- if (h < 0) // the following formula works for positive altitudes only.
- h = 0; // if h = -0.08901179 a div/0 would occur.
-
- // formula 16.4 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
- // 1.02 / tan(h + 10.26 / (h + 5.10)) h in degrees, result in arc minutes -> converted to rad:
- return 0.0002967 / Math.tan(h + 0.00312536 / (h + 0.08901179));
- }
-
- // general sun calculations
-
- function solarMeanAnomaly(d) { return rad * (357.5291 + 0.98560028 * d); }
-
- function eclipticLongitude(M) {
-
- var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), // equation of center
- P = rad * 102.9372; // perihelion of the Earth
-
- return M + C + P + PI;
- }
-
- function sunCoords(d) {
-
- var M = solarMeanAnomaly(d),
- L = eclipticLongitude(M);
-
- return {
- dec: declination(L, 0),
- ra: rightAscension(L, 0)
- };
- }
-
-
- var SunCalc = {};
-
-
- // calculates sun position for a given date and latitude/longitude
-
- SunCalc.getPosition = function (date, lat, lng) {
-
- var lw = rad * -lng,
- phi = rad * lat,
- d = toDays(date),
-
- c = sunCoords(d),
- H = siderealTime(d, lw) - c.ra;
-
- return {
- azimuth: azimuth(H, phi, c.dec),
- altitude: altitude(H, phi, c.dec)
- };
- };
-
-
- // sun times configuration (angle, morning name, evening name)
-
- var times = SunCalc.times = [
- [-0.833, 'sunrise', 'sunset' ],
- [ -0.3, 'sunriseEnd', 'sunsetStart' ],
- [ -6, 'dawn', 'dusk' ],
- [ -12, 'nauticalDawn', 'nauticalDusk'],
- [ -18, 'nightEnd', 'night' ],
- [ 6, 'goldenHourEnd', 'goldenHour' ]
- ];
-
- // adds a custom time to the times config
-
- SunCalc.addTime = function (angle, riseName, setName) {
- times.push([angle, riseName, setName]);
- };
-
-
- // calculations for sun times
-
- var J0 = 0.0009;
-
- function julianCycle(d, lw) { return Math.round(d - J0 - lw / (2 * PI)); }
-
- function approxTransit(Ht, lw, n) { return J0 + (Ht + lw) / (2 * PI) + n; }
- function solarTransitJ(ds, M, L) { return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L); }
-
- function hourAngle(h, phi, d) { return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d))); }
- function observerAngle(height) { return -2.076 * Math.sqrt(height) / 60; }
-
- // returns set time for the given sun altitude
- function getSetJ(h, lw, phi, dec, n, M, L) {
-
- var w = hourAngle(h, phi, dec),
- a = approxTransit(w, lw, n);
- return solarTransitJ(a, M, L);
- }
-
-
- // calculates sun times for a given date, latitude/longitude, and, optionally,
- // the observer height (in meters) relative to the horizon
-
- SunCalc.getTimes = function (date, lat, lng, height) {
-
- height = height || 0;
-
- var lw = rad * -lng,
- phi = rad * lat,
-
- dh = observerAngle(height),
-
- d = toDays(date),
- n = julianCycle(d, lw),
- ds = approxTransit(0, lw, n),
-
- M = solarMeanAnomaly(ds),
- L = eclipticLongitude(M),
- dec = declination(L, 0),
-
- Jnoon = solarTransitJ(ds, M, L),
-
- i, len, time, h0, Jset, Jrise;
-
-
- var result = {
- solarNoon: fromJulian(Jnoon),
- nadir: fromJulian(Jnoon - 0.5)
- };
-
- for (i = 0, len = times.length; i < len; i += 1) {
- time = times[i];
- h0 = (time[0] + dh) * rad;
-
- Jset = getSetJ(h0, lw, phi, dec, n, M, L);
- Jrise = Jnoon - (Jset - Jnoon);
-
- result[time[1]] = fromJulian(Jrise);
- result[time[2]] = fromJulian(Jset);
- }
-
- return result;
- };
-
-
- // moon calculations, based on http://aa.quae.nl/en/reken/hemelpositie.html formulas
-
- function moonCoords(d) { // geocentric ecliptic coordinates of the moon
-
- var L = rad * (218.316 + 13.176396 * d), // ecliptic longitude
- M = rad * (134.963 + 13.064993 * d), // mean anomaly
- F = rad * (93.272 + 13.229350 * d), // mean distance
-
- l = L + rad * 6.289 * sin(M), // longitude
- b = rad * 5.128 * sin(F), // latitude
- dt = 385001 - 20905 * cos(M); // distance to the moon in km
-
- return {
- ra: rightAscension(l, b),
- dec: declination(l, b),
- dist: dt
- };
- }
-
- SunCalc.getMoonPosition = function (date, lat, lng) {
-
- var lw = rad * -lng,
- phi = rad * lat,
- d = toDays(date),
-
- c = moonCoords(d),
- H = siderealTime(d, lw) - c.ra,
- h = altitude(H, phi, c.dec),
- // formula 14.1 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
- pa = atan(sin(H), tan(phi) * cos(c.dec) - sin(c.dec) * cos(H));
-
- h = h + astroRefraction(h); // altitude correction for refraction
-
- return {
- azimuth: azimuth(H, phi, c.dec),
- altitude: h,
- distance: c.dist,
- parallacticAngle: pa
- };
- };
-
-
- // calculations for illumination parameters of the moon,
- // based on http://idlastro.gsfc.nasa.gov/ftp/pro/astro/mphase.pro formulas and
- // Chapter 48 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
-
- SunCalc.getMoonIllumination = function (date) {
-
- var d = toDays(date || new Date()),
- s = sunCoords(d),
- m = moonCoords(d),
-
- sdist = 149598000, // distance from Earth to Sun in km
-
- phi = acos(sin(s.dec) * sin(m.dec) + cos(s.dec) * cos(m.dec) * cos(s.ra - m.ra)),
- inc = atan(sdist * sin(phi), m.dist - sdist * cos(phi)),
- angle = atan(cos(s.dec) * sin(s.ra - m.ra), sin(s.dec) * cos(m.dec) -
- cos(s.dec) * sin(m.dec) * cos(s.ra - m.ra));
-
- return {
- fraction: (1 + cos(inc)) / 2,
- phase: 0.5 + 0.5 * inc * (angle < 0 ? -1 : 1) / Math.PI,
- angle: angle
- };
- };
-
-
- function hoursLater(date, h) {
- return new Date(date.valueOf() + h * dayMs / 24);
- }
-
- // calculations for moon rise/set times are based on http://www.stargazing.net/kepler/moonrise.html article
-
- SunCalc.getMoonTimes = function (date, lat, lng, inUTC) {
- var t = new Date(date);
- if (inUTC) t.setUTCHours(0, 0, 0, 0);
- else t.setHours(0, 0, 0, 0);
-
- var hc = 0.133 * rad,
- h0 = SunCalc.getMoonPosition(t, lat, lng).altitude - hc,
- h1, h2, rise, set, a, b, xe, ye, d, roots, x1, x2, dx;
-
- // go in 2-hour chunks, each time seeing if a 3-point quadratic curve crosses zero (which means rise or set)
- for (var i = 1; i <= 24; i += 2) {
- h1 = SunCalc.getMoonPosition(hoursLater(t, i), lat, lng).altitude - hc;
- h2 = SunCalc.getMoonPosition(hoursLater(t, i + 1), lat, lng).altitude - hc;
-
- a = (h0 + h2) / 2 - h1;
- b = (h2 - h0) / 2;
- xe = -b / (2 * a);
- ye = (a * xe + b) * xe + h1;
- d = b * b - 4 * a * h1;
- roots = 0;
-
- if (d >= 0) {
- dx = Math.sqrt(d) / (Math.abs(a) * 2);
- x1 = xe - dx;
- x2 = xe + dx;
- if (Math.abs(x1) <= 1) roots++;
- if (Math.abs(x2) <= 1) roots++;
- if (x1 < -1) x1 = x2;
- }
-
- if (roots === 1) {
- if (h0 < 0) rise = i + x1;
- else set = i + x1;
-
- } else if (roots === 2) {
- rise = i + (ye < 0 ? x2 : x1);
- set = i + (ye < 0 ? x1 : x2);
- }
-
- if (rise && set) break;
-
- h0 = h2;
- }
-
- var result = {};
-
- if (rise) result.rise = hoursLater(t, rise);
- if (set) result.set = hoursLater(t, set);
-
- if (!rise && !set) result[ye > 0 ? 'alwaysUp' : 'alwaysDown'] = true;
-
- return result;
- };
-
-
- // export as Node module / AMD module / browser variable
- if (typeof exports === 'object' && typeof module !== 'undefined') module.exports = SunCalc;
- else if (typeof define === 'function' && define.amd) define(SunCalc);
- else window.SunCalc = SunCalc;
-
- }());
|