Unittest for caching

August 27, 2025

Unittest for caching

Contents
(1__Test Information| 3
[1.1 Test Candidate Information| 3
[1.2 Unittest Information| L 3
1.3 Test System Information| 3
[2_Statistid 3
.1 Test-Statistic for testrun with python 3.13.5 (tinal)] 0. 3
2.2 Coverage Statistic] e e e 4
[3 Tested Requirements| 5
[3.1 Cache generation (json /pickle)o 5
13.1.1 Data generation from source instance, if no cache is available] 5
13.1.2 Create complete cache from the given data instance|. 5
13.1.3 Create cache partially from a given data instance by get method| 6
3.1.4 Ignore corrupt cache file]. 7
3.2 Load spreading for full update] 8
13.2.1 Full update with delay between each data generation for the cache|. 8
13.2.2 No cache generation if disabled|. 8
3.3 Dump cache conditions| 9
3.3.1 Dump cache it time is expired| e 9
[3.3.2 Dump cache it data version INnCreases|. 10
3.3.3 Dump cache it data uidis changed| L 11
[3.3.4 Dump cache if storage version is changed| oo L 12
13.3.5 Dump cache if stored value'is 'None'| 13
B.4 Definition of uncached datal 13
B.41 Define uncacheddatal 13
3.6 Callback on data storage| L 14
[3.5.1 If no data is changed, no callback will be executed| 14
3.5.2 Callback execution in case of a full update]. L 15
[3.5.3 Callback execution in case of get function| L 15

Unittest for caching

[A" Trace for testrun with python 3.13.5 (final)| 17
[A.1 Tests with status Info (15)] 17
ATT REQ-0003] . - - - ¢ o o e 17
AT2REQOD0T] . - . . . o oo 18
AT3TREQOD05] . - - o v o oo 19

4 0015 | L L 21

5 -0004 | . .. 22

1.6 -0002 | . .. 22

d.7 -0006 | . . . 23

1.8 0007 | . . . 26
ATO " REQO008] . - - -« o o e 28

ATT0 REQ-0009] . - . .« o oo 30
ATIT REQODTA] o o 31
ATI2REQODIO] . - - . . o oo 33

1.13 0011 | o . 34

.1.14 0012 | L 34

.1.15 0013 | o 35

[B Test-Coverage| 36
B.1 caching | e 36
B.1.1 caching.__init__.py |. 36

2/

Unittest for caching

1 Test Information

1.1 Test Candidate Information

The Module caching is designed to store information in json or pickle files to support them much faster then
generating them from the original source file. For more Information read the documentation.

Library Information

Name caching

State Released

Version 64fb959abbe7c435891f76f919b7dbf1
Dependencies

1.2 Unittest Information

Unittest Information

Version €3612b1e5df3c0b3635e4b67db929706
Testruns with python 3.13.5 (final)

1.3 Test System Information

System Information

Architecture 64bit

Distribution Debian GNU/Linux 13 trixie

Hostname erle

Kernel 6.15.1-surface-2 (#2 SMP PREEMPT _DYNAMIC Tue Jun 24 21:02:07 UTC 2025)
Machine x86 64

Path /home/dirk/work/unittest _collection/caching

System Linux

Username dirk

2 Statistic

2.1
Number of tests 15
Number of successfull tests 15

Number of possibly failed tests 0

Number of failed tests 0
Executionlevel Full Test (all defined tests)
Time consumption 7.083s

3/

Unittest for caching

2.2 Coverage Statistic

Module- or Filename Line-Coverage Branch-Coverage

caching 97.3% 92.0%
caching.__init__.py 97.3%

4/

Unittest for caching

3 Tested Requirements

3.1 Cache generation (json /pickle)
3.1.1 Data generation from source instance, if no cache is available

Description
If the cache is not available, the data shall be generated from the source instance.

Reason for the implementation
There shall be the posibility to create the cache on demand, so the fallback is to generate the data from the source

instance.

Fitcriterion
Caching is called without previous cache generation and the data from the source instance is completely available.

Testresult
This test was passed with the state: . See also full trace in section [A.1.1]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ __init__ .py (329)
Start-Time: 2025-08-27 18:19:33,119
Finished-Time: 2025-08-27 18:19:33,121
Time-Consumption 0.002s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property cache json’ with a class holding the data to be cached
Data from cached instance with key=str is correct (Content ' string_ " and Type is <class
'str'>).
Data from cached instance with key=unicode is correct (Content ' unicode ' and Type is

<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [one’, 2, 3, '4'] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": '1", '2": 2, '3": 'three’, '4"
'4'} and Type is <class 'dict'>).

Data from cached instance with key=unknown key is correct (Content 5 and Type is <class
'int'>).

3.1.2 Create complete cache from the given data instance

Description
There shall be a method caching all information from the given instance.

5/

Unittest for caching

Reason for the implementation
Independent usage of data generation and data usage (e.g. the user requesting the data is not able to create the data).

Fitcriterion
Caching is called twice with different data instances and the cached data from the first call is completely available.

Testresult
This test was passed with the state: . See also full trace in section|A.1.2]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__ .py (329)
Start-Time: 2025-08-27 18:19:33,121
Finished-Time: 2025-08-27 18:19:33,123
Time-Consumption 0.002s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property cache pickle’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": 1, '2": 'two’, '3": '3", '4"
4} and Type is <class 'dict'>).

Data from cached instance with key=unknown key is correct (Content 5 and Type is <class
'int'>).

3.1.3 Create cache partially from a given data instance by get method

Description
On getting data from the cached instance, the information shall be stored in the cache file.

Reason for the implementation
There shall be the posibility to create the cache on demand, so the fallback is to generate the data from the source
instance.

Fitcriterion
Caching is called twice with different data instances and the cached data from the first call is available for all keys cached
on the first run.

Testresult
This test was passed with the state: . See also full trace in section|A.1.3]

6/

Unittest for caching

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__ .py (329)

Start-Time: 2025-08-27 18:19:33,123

Finished-Time: 2025-08-27 18:19:33,128

Time-Consumption 0.005s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Prepare: First usage of 'property cache json’ with a class holding the data to be cached
Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content ' unicode " and Type is
<class 'str'>).
Data from cached instance with key=integer is correct (Content 17 and Type is <class "int">).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).
Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).
Data from cached instance with key=dict is correct (Content {'1': 1, '2": "two’, '3": '3, '4"
4} and Type is <class 'dict'>).
Data from cached instance with key=unknown key is correct (Content 5 and Type is <class
'int'>).

3.1.4 Ignore corrupt cache file

Description

Ignore corrupt cachefile, while loading cache.

Reason for the implementation

Suppress exceptions while caching.

Fitcriterion

Loading cache results in no exception, when cache file is empty.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.4]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__ .py (329)
Start-Time: 2025-08-27 18:19:33,128

Finished-Time: 2025-08-27 18:19:33,132

Time-Consumption 0.004s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Creating empty cache file /home/dirk/work/unittest collection/caching/unittest/

output data/cache data test corrupt cache.json.
Empty cache file ignored on loading cache.

7/

Unittest for caching

3.2 Load spreading for full update
3.2.1 Full update with delay between each data generation for the cache

Description
The full update method shall pause for a given time between every cached item.

Reason for the implementation
Load spreading in case of cyclic called .full_update().

Fitcriterion
The time consumption of the method .full_update(<sleep_time>) shall consume n times the given sleep_time.
Where n is the number of items which will be cahed from the source instance.

Testresult
This test was passed with the state: . See also full trace in section|A.1.5]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__ .py (329)
Start-Time: 2025-08-27 18:19:33,132
Finished-Time: 2025-08-27 18:19:38,135
Time-Consumption 5.003s
Testsummary:
Info Prepare: Cleanup before testcase execution

Consumed time for full _update is greater expectation (Content 5.002429485321045 and Type

is <class 'float’>).
Consumed time for full _update is greater expectation (Content 5.002429485321045 and Type

is <class 'float’>).

3.2.2 No cache generation if disabled

Description
The cache shall be generated by the .get () method, only if the cache instance parameter store_on_get is set to True.

Reason for the implementation
Independent usage of data generation and data usage (e.g. the user requesting the data is not able to create the data).

Fitcriterion
Create a caching instance with store_on_get set to False. Get every item of the source instance with the .get ()
method and check that no cache file exists.

Testresult
This test was passed with the state: . See also full trace in section|A.1.6

8/

Unittest for caching

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__ .py (329)
Start-Time: 2025-08-27 18:19:38,136

Finished-Time: 2025-08-27 18:19:38,139

Time-Consumption 0.004s

Testsummary:

Info Prepare: Cleanup before testcase execution

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str’>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class "int">).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": 1, 2"
4} and Type is <class 'dict'>).

The cache file (/home/dirk/work/unittest collection/caching/unittest/output data/
cache data_test full update_sleep.json) shall not exist is correct (Content False and Type
is <class 'bool">).

two', '3’ '3, '4":

3.3 Dump cache conditions

3.3.1 Dump cache if time is expired

Description

Dump the cached item, if this item is older then the given expirery time.

Reason for the implementation

Ensure, that the cache is updated from time to time. For example for items which do not change very often.

Fitcriterion

Create a cache instance, cache some data. Intialise a second caching instance with a different source instance and a

expire time. Wait for longer than the given expiry time and check that the items from the second source instance are

returned.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.7]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.13.5 (final)

/home/dirk/work/unittest _collection/caching/unittest/src/report/ init_
2025-08-27 18:19:38,139

2025-08-27 18:19:40,154

2.015s

_-py (329)

9/

Unittest for caching

Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property cache json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str’>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class "int">).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1': 1, '2": "two’, ‘3" '3, '4"
4} and Type is <class 'dict'>).

Data from cached instance with key=str is correct (Content ' string_ " and Type is <class
'str'>).
Data from cached instance with key=unicode is correct (Content ' unicode " and Type is

<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int">).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [one’, 2, 3, '4’] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4":
'4'} and Type is <class 'dict'>).

3.3.2 Dump cache if data version increases

Description
Dump the complete cache, if the data version of the source instance is increased.

Reason for the implementation
The data version is part of the source instance. Increasing the data version indicates, that the source instance generates
the data in another way or the structure of the data is changed. In that condition, the cache needs to be ignored.

Fitcriterion
Create a cached instance and cache some items. Generate a second cached instance with different source data and a
increased data version. Ensure, that the cache instance returns the values from the second source. It is required to set

load_all_on_init to False and store_on_get to True.

Testresult
This test was passed with the state: . See also full trace in section [A.1.8]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__.py (329)
Start-Time: 2025-08-27 18:19:40,154
Finished-Time: 2025-08-27 18:19:40,163

10/ 1]

Unittest for caching

Time-Consumption 0.009s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Prepare: First usage of 'property cache json’ with a class holding the data to be cached
Data from cached instance with key=str is correct (Content ' _string_ " and Type is <class
'str'>).
Data from cached instance with key=unicode is correct (Content ' unicode " and Type is

<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class "int">).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4’] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": '1", '2": 2, '3": 'three’, '4"
'4'} and Type is <class 'dict'>).

3.3.3 Dump cache if data uid is changed

Description
Dump the complete cache, if the data uid of the source instance is changed.

Reason for the implementation
The data uid is part of the source instance. Changing the data uid indicates, that the source of the data created by the
source instance is changed (e.g. the uid of a file or folder) and the cache needs to be ignored.

Fitcriterion

Create a cached instance and cache some items. Generate a second cached instance with different source data and
a changed data uid. Ensure, that the cache instance returns the values from the second source. It is required to set
load_all_on_init to False and store_on_get to True.

Testresult
This test was passed with the state: . See also full trace in section [A.1.9]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ __init__.py (329)
Start-Time: 2025-08-27 18:19:40,163
Finished-Time: 2025-08-27 18:19:40,172
Time-Consumption 0.009s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property cache json’ with a class holding the data to be cached
Data from cached instance with key=str is correct (Content ' string_ " and Type is <class
'str’>).
Data from cached instance with key=unicode is correct (Content ' unicode " and Type is

<class 'str'>).

11/]

Unittest for caching

Data from cached instance with key=integer is correct (Content 34 and Type is <class "int">).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4’] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": '1", '2": 2, '3": 'three’, '4"
'4'} and Type is <class 'dict'>).

3.3.4 Dump cache if storage version is changed

Description
Dump the complete cache, if the storage version of the caching class is changed.

Reason for the implementation
The storage version is part of the caching class. Changing the storage version indicates, that the previously stored cache
is not compatible due to new data storage and the cache needs to be ignored.

Fitcriterion
Create a cached instance and cache some items. Generate a second cached instance with different source data and a
changed storage version. Ensure, that the cache instance returns the values from the second source. It is required to set

load_all_on_init to False and store_on_get to True.

Testresult
This test was passed with the state: . See also full trace in section [A.1.10f
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest _ collection/caching/unittest/src/report/ __init__ .py (329)
Start-Time: 2025-08-27 18:19:40,172
Finished-Time: 2025-08-27 18:19:40,184
Time-Consumption 0.011s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property cache json’ with a class holding the data to be cached
Data from cached instance with key=str is correct (Content ' string_ " and Type is <class
'str'>).
Data from cached instance with key=unicode is correct (Content ' unicode ' and Type is

<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [one’, 2, 3, '4'] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4"
'4'} and Type is <class 'dict'>).

12/]

Unittest for caching

3.3.5 Dump cache if stored value is 'None’

Description
Dump the cached item, if the stored value is None.

Reason for the implementation
If no information is stored in the cache, the data shall be generated by the source instance.

Fitcriterion

Create a cached instance and cache some items. One needs to have None as value. Generate a second cached instance
with different source data (especially, the previous item with value None needs to have a not None value. Ensure, that
the caching instance returns not None from the second source.

Testresult
This test was passed with the state: . See also full trace in section|A.1.11]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__ .py (329)
Start-Time: 2025-08-27 18:19:40,184
Finished-Time: 2025-08-27 18:19:40,190
Time-Consumption 0.005s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property cache json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content "unicode’ and Type is <class
'str’>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class "int">).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": 1, '2": 'two’, '3": '3", '4"
4} and Type is <class 'dict'>).

3.4 Definition of uncached data
3.4.1 Define uncached data

Description
It shall be possible to define items which are not cached.

Reason for the implementation
If there is dynamic changed data in the source instance, it shall be possible to define these items as non cached to get

them always from the source instance.

13/ 1]

Unittest for caching

Fitcriterion

Create a cached instance and cache some items. Generate a second cached instance with different source data and set
at least one item as source item. This item should be previously cached. Ensure, that the source item isis the one from
the second source instance.

Testresult
This test was passed with the state: . See also full trace in section [A.1.12]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ __init__ .py (329)
Start-Time: 2025-08-27 18:19:40,190
Finished-Time: 2025-08-27 18:19:40,197
Time-Consumption 0.007s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property cache json’ with a class holding the data to be cached
Data from cached instance with key=str is correct (Content ' string_ " and Type is <class
'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": 1, '2": 'two’, '3": '3", '4"
4} and Type is <class 'dict'>).

3.5 Callback on data storage
3.5.1 If no data is changed, no callback will be executed

Description
The store callback shall not be executed, if no cache is stored.

Reason for the implementation
Do actions, if cache data is stored to disk.

Fitcriterion
Initialise the cache instance without storing cache data. Ensure, that the callback is never executed.

Testresult
This test was passed with the state: . See also full trace in section [A.1.13]

14/

Unittest for caching

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__ .py (329)
Start-Time: 2025-08-27 18:19:40,198

Finished-Time: 2025-08-27 18:19:40,199

Time-Consumption 0.001s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Installing save callback with no get or full _update execution.

Save callback execution counter is correct (Content 0 and Type is <class 'int'>).
Save callback execution counter is correct (Content None and Type is <class 'NoneType'>).

3.56.2 Callback execution in case of a full update

Description

The storage callback shall be called once on every full_update().

Reason for the implementation

Do actions, if cache data is stored to disk.

Fitcriterion

Initialise the cache instance and ensure, that the callback is executed as often as the .full_update() method is

executed.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.14]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__ .py (329)
Start-Time: 2025-08-27 18:19:40,199

Finished-Time: 2025-08-27 18:19:40,202

Time-Consumption 0.003s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Installing save callback and execute full _update.

Save callback execution counter is correct (Content 1 and Type is <class 'int'>).
Save callback execution counter is correct (Content <caching.property cache json object at
0x725c31606e90> and Type is <class 'caching.property cache json'>).

3.5.3 Callback execution in case of get function

Description

The storage callback, shall be called once on every .get (), if storage_on_get is set to True.

15/ [¢1]

Unittest for caching

Reason for the implementation
Do actions, if cache data is stored to disk.

Fitcriterion
Initialise the cache instance and ensure, that the callback is executed as often as the .get () method is executed.

Testresult
This test was passed with the state: . See also full trace in section |A.1.15]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest _collection/caching/unittest/src/report/ _init__ .py (329)
Start-Time: 2025-08-27 18:19:40,202
Finished-Time: 2025-08-27 18:19:40,206
Time-Consumption 0.003s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Installing save _callback and execute a single get.
Info Installing save _callback and execute a single get.

Save callback execution counter is correct (Content 2 and Type is <class 'int'>).
Save callback execution counter is correct (Content <caching.property cache json object at
0x725c31606530> and Type is <class 'caching.property cache json'>).

16 / [¢1]

Unittest for caching

A Trace for testrun with python 3.13.5 (final)

A.1 Tests with status Info (15)
A.1.1 REQ-0003

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property cache json' with a class holding the data to be cached

Data from cached instance with key=str is correct (Content ' _string_ " and Type is <class 'str'>).

Cache file does not exists (yet).

Loading property for key='str' from source instance

Result (Data from cached instance with key=str): '__string _' (<class 'str'>)
Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)
Data from cached instance with key=unicode is correct (Content ' unicode ' and Type is <class

'str'>).

Loading property for key='unicode' from source instance

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class

— 'Str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class "int'>).

Loading property for key='integer' from source instance
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance

17 / B

Unittest for caching

Result (Data from cached instance with key=list): ['omne', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
— '1iSt'>)

Data from cached instance with key=dict is correct (Content {'1": '1', '2": 2, '3": 'three’, '4": '4'} and
Type is <class 'dict’>).

Loading property for key='dict' from source instance

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

< 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=unknown key is correct (Content 5 and Type is <class 'int">).

Key 'unknown_key' is not in cached_keys. Uncached data will be returned.
Result (Data from cached instance with key=unknown_key): 5 (<class 'int'>)

Expectation (Data from cached instance with key=unknown_key): result = 5 (<class 'int'>)

A.1.2 REQ-0001

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test rum.

Info Prepare: First usage of 'property cache pickle’ with a class holding the data to be cached

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
<, a_test_load on_init.pkl)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da
- ta/cache_data_test_load_on_init.pkl)

Providing property for 'str' from cache
Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache

Unittest for caching

Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float’>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
— 'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class "dict'>).

Providing property for 'dict' from cache
Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
« (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
- '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=unknown key is correct (Content 5 and Type is <class 'int">).

Key 'unknown_key' is not in cached_keys. Uncached data will be returned.
Result (Data from cached instance with key=unknown_key): 5 (<class 'int'>)

Expectation (Data from cached instance with key=unknown_key): result = 5 (<class 'int'>)

A.1.3 REQ-0005

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Cache file does not exist on filesystem.

Unittest for caching

Info Prepare: First usage of 'property cache json' with a class holding the data to be cached

Cache file does not exists (yet).

Loading property for key='str' from source instance

Adding key=str, value=string with timestamp=1756311573 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Loading property for key='integer' from source instance

Adding key=integer, value=17 with timestamp=1756311573 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Loading property for key='list' from source instance

Adding key=list, value=[1, 'two', '3', 4] with timestamp=1756311573 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Loading property for key='dict' from source instance

Adding key=dict, value={'1': 1, '2': 'two', '3': '3', '4': 4} with timestamp=1756311573 to

— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_load_on_init.json)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da
— ta/cache_data_test_load_on_init.json)

Providing property for 'str' from cache

Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)
Data from cached instance with key=unicode is correct (Content ' unicode " and Type is <class
str'>).

Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1756311573 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_load_on_init.json)

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class

o 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache

Unittest for caching

Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance

Adding key=float, value=2.71828 with timestamp=1756311573 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class 'list’>).

Providing property for 'list' from cache

Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)
Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
< 'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class 'dict'>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
-~ '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=unknown key is correct (Content 5 and Type is <class 'int’>).

Key 'unknown_key' is not in cached_keys. Uncached data will be returned.
Result (Data from cached instance with key=unknown_key): 5 (<class 'int'>)

Expectation (Data from cached instance with key=unknown_key): result = 5 (<class 'int'>)
A.1.4 REQ-0015

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test rum.

Info Creating empty cache file /home/dirk/work/unittest collection/caching/unittest/output data/
cache data_test corrupt cache.json.

Empty cache file ignored on loading cache.

Exception while loading cache file /home/dirk/work/unittest_collection/caching/unittest/outpu

— t_data/cache_data_test_corrupt_cache. json

Unittest for cachin

g

A.1.5 REQ-0004

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Cache file does not exist on filesystem.

Consumed time for full _update is greater expectation (Content 5.002429485321045 and Type is <class
'float’>).

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_full_update_sleep.json)

Result (Consumed time for full_update): 5.002429485321045 (<class 'float'>)

Expectation (Consumed time for full_ update): result > 5.0 (<class 'float'>)

Consumed time for full _update is greater expectation (Content 5.002429485321045 and Type is <class
'float'>).

Result (Consumed time for full_update): 5.002429485321045 (<class 'float'>)

Expectation (Consumed time for full_update): result < 5.5 (<class 'float'>)

A.1.6 REQ-0002

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test rum.

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
Providing property for 'str' from cache

Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str’>).

Providing property for 'unicode' from cache

N
=

Unittest for caching

Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class "int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float’>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)
Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
— '1iSt'>)

Data from cached instance with key=dict is correct (Content {"'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class "dict'>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
— '3', '4': 4 } (<class 'dict'>)

The cache file (/home/dirk/work/unittest _collection/caching/unittest/output _data/
cache data_test full update sleep.json) shall not exist is correct (Content False and Type is
<class 'bool">).

Result (The cache file (/home/dirk/work/unittest_collection/caching/unittest/output_data/cach
— e_data_test_full_update_sleep.json) shall not exist): False (<class 'bool'>)

Expectation (The cache file (/home/dirk/work/unittest_collection/caching/unittest/output_data
— /cache_data_test_full_update_sleep.json) shall not exist): result = False (<class 'bool'>)

A.1.7 REQ-0006

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test rum.

Unittest for caching

Info Prepare: First usage of 'property cache json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da
- ta/cache_data_test_dump_cache. json)

Providing property for 'str' from cache
Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str’>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class "int">).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float’>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
— '1iSt'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class "dict'>).

Providing property for 'dict' from cache

Unittest for caching

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
- '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=str is correct (Content ' string_ " and Type is <class 'str'>).

The cached value is old, cached value will be ignored
Loading property for key='str' from source instance
Adding key=str, value=__string _ with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string_ _' (<class 'str'>)
Data from cached instance with key=unicode is correct (Content ' unicode ' and Type is <class
'str'>).

The cached value is old, cached value will be ignored
Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=unicode): _unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class

— 'Str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class "int'>).

The cached value is old, cached value will be ignored
Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

The cached value is old, cached value will be ignored
Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

< a_test_dump_cache. json)

Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

25 / [41]

Unittest for caching

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

The cached value is old, cached value will be ignored

Loading property for key='list' from source instance

Adding key=list, value=['one', 2, 3, '4'] with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=list): ['omne', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
— 'list'>)

Data from cached instance with key=dict is correct (Content {"1': "1, '2": 2, '3": 'three’, '4": "4’} and
Type is <class 'dict’>).

The cached value is old, cached value will be ignored

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1756311580 to
— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':
< 'three', '4': '4' } (<class 'dict'>)

A.1.8 REQ-0007

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test runm.

Info Prepare: First usage of 'property cache json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content ' _string_ " and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)

20/

Unittest for caching

Data version increased, ignoring previous cache data
Loading property for key='str' from source instance
Adding key=str, value=__string__ with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=str): '__string_ _' (<class 'str'>)
Expectation (Data from cached instance with key=str): result = '__string_ _' (<class 'str'>)
Data from cached instance with key=unicode is correct (Content ' unicode ' and Type is <class

str'>).

Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=unicode): _unicode_ (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__

< 'str'>)

' (<class

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=list): ['omne', 2, 3, '4'] (<class 'list'>)

Unittest for caching

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
— 'list'>)

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4": '4'} and
Type is <class 'dict’>).

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1756311580 to
— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

< 'three', '4': '4' } (<class 'dict'>)

A.1.9 REQ-0008

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property cache json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content ' string_ " and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da
- ta/cache_data_test_dump_cache. json)

Source uid changed, ignoring previous cache data

Loading property for key='str' from source instance

Adding key=str, value=__string__ with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=str): '__string _' (<class 'str'>)
Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)
Data from cached instance with key=unicode is correct (Content ' unicode " and Type is <class

"str'>).

Loading property for key='unicode' from source instance

Unittest for cach

Adding key=unicode, value=__unicode__ with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class

- 'str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class "int'>).

Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1756311580 to chache
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

< a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance

Adding key=float, value=2.71828 with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=list): ['omne', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
— 'list'>)

Data from cached instance with key=dict is correct (Content {'1': '1’, '2": 2, '3": 'three’, '4": '4'} and
Type is <class 'dict’>).

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1756311580 to
— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
< a_test_dump_cache.json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

< 'three', '4': '4' } (<class 'dict'>)

Unittest for caching

A.1.10 REQ-0009

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property cache json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content ' string_ " and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)

Storage version changed, ignoring previous cache data

Loading property for key='str' from source instance

Adding key=str, value=__string__ with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string_ _' (<class 'str'>)
Data from cached instance with key=unicode is correct (Content ' unicode ' and Type is <class
str'>).

Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode_

o 'str'>)

(<class

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

30/

Unittest for caching

Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance

Adding key=float, value=2.71828 with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class list’>).

Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=list): ['omne', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
— '1iSt'>)

Data from cached instance with key=dict is correct (Content {"1': "1, '2": 2, '3": 'three’, '4": "4’} and
Type is <class 'dict'>).

Loading property for key='dict' from source instance
Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1756311580 to
— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':
< 'three', '4': '4' } (<class 'dict'>)

A.1.11 REQ-0014

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test runm.

Info Prepare: First usage of 'property cache json' with a class holding the data to be cached

Cache file does not exists (yet).

Unittest for caching

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)
Providing property for 'str' from cache
Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str’>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float’>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
< 'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class "dict'>).

Providing property for 'dict' from cache
Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
— '3', '4': 4 } (<class 'dict'>)

Unittest for caching

A.1.12 REQ-0010

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test rum.

Info Prepare: First usage of 'property cache json' with a class holding the data to be cached

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_source_key_def.json)

Data from cached instance with key=str is correct (Content ' string_ " and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da
— ta/cache_data_test_source_key_def. json)

Loading property for key='str' from source instance

Adding key=str, value=__string__ with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_source_key_def.json)

Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = ' _string__' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class "int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_source_key_def.json)

33/

Unittest for caching

Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)
Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
— '1iSt'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class "dict'>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
— '3', '4': 4 } (<class 'dict'>)

A.1.13 REQ-0011

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Installing save callback with no get or full update execution.

Save callback execution counter is correct (Content 0 and Type is <class 'int">).

Result (Save callback execution counter): O (<class 'int'>)

Expectation (Save callback execution counter): result = 0 (<class 'int'>)

Save callback execution counter is correct (Content None and Type is <class 'NoneType'>).

Result (Save callback execution counter): None (<class 'NoneType'>)

Expectation (Save callback execution counter): result = None (<class 'NoneType'>)

A.1.14 REQ-0012

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Cache file does not exist on filesystem.

V\v
=]

Unittest for caching

Info Installing save callback and execute full _update.

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/save_call
— back_callback. json)

Save callback execution counter is correct (Content 1 and Type is <class 'int’>).

Result (Save callback execution counter): 1 (<class 'int'>)

Expectation (Save callback execution counter): result = 1 (<class 'int'>)

Save callback execution counter is correct (Content <caching.property cache json object at
0x725c31606e90> and Type is <class 'caching.property cache json'>).

Result (Save callback execution counter): <caching.property_cache_json object at

— 0x725c31606e90> (<class 'caching.property_cache_json'>)

Expectation (Save callback execution counter): result = <caching.property_cache_json object at

— 0x725c31606e90> (<class 'caching.property_cache_json'>)

A.1.15 REQ-0013

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Installing save callback and execute a single get.

Cache file does not exists (yet).
Loading property for key='str' from source instance
Adding key=str, value=string with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/save_call
- back_callback. json)

Info Installing save callback and execute a single get.

Loading property for key='unicode' from source instance
Adding key=unicode, value=unicode with timestamp=1756311580 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/save_call
— back_callback. json)

ol
=]

1

Unittest for caching

Save callback execution counter is correct (Content 2 and Type is <class 'int’>).

Result (Save callback execution counter): 2 (<class 'int'>)

Expectation (Save callback execution counter): result = 2 (<class 'int'>)

Save callback execution counter is correct (Content <caching.property cache json object at

0x725¢31606530> and Type is <class 'caching.property cache json'>).

Result (Save callback execution counter): <caching.property_cache_json object at

— 0x725c31606530> (<class 'caching.property_cache_json'>)

Expectation (Save callback execution counter): result = <caching.property_cache_json object at

— 0x725c31606530> (<class 'caching.property_cache_json'>)

B Test-Coverage

B.1 caching

The line coverage for caching was 97.3%
The branch coverage for caching was 92.0%

B.1.1 caching.__init__.py

The line coverage for caching.__init__.py was 97.3%
The branch coverage for caching.__init__.py was 92.0%

#!/usr/bin/env python

> # —x— coding: utf—8 —x—

4

5

unun

caching (Caching Module)

*x Author :xx

x Dirk Alders <sudo—dirk@mount—mockery.de>

2 %% Description :xx%

This Module supports functions and classes for caching e.g. properties of other instances.

6 **xSubmodules:xx*

%+ :class: caching.property cache json’
» ¥ :class: caching.property cache pickle"

*x Unittest 1

See also the :download: unittest <caching/ testresults /unittest.pdf>" documentation.

__DEPENDENCIES = []

36 /1]

33

34

35

36

38

39

40

41

43

44

45

46

48

49

50

51

53

54

55

56

57

58

59

60

61

63

64

65

66

74

Unittest for caching

import json
logging

os

import
import
import pickle
import time
try:

from config
except ImportError:

ROOT LOGGER NAME = 'root'

logger =

__DESCRIPTION = """The Module {\\tt %s} is
tt pickle} files to support them much faster
file .

For more Information read the documentation."""

"""The Module Description"""

class property cache pickle(object):
nunu

This class caches the data from a given

designed to store

“source instance

import APP_NAME as ROOT LOGGER NAME

logging .getLogger (ROOT LOGGER NAME) . getChild(_ name)

information

in {\\tt json} or {\\

then generating them from the original source

% name .replace(' ',

ALY

It takes the data from the cache

instead of generating the data from the “source instance,

if the conditions for

admonition :: Required properties for the
* *xxuid():*#*% returns the unique
id .

* xxkeys () k%

want to use the unique
list of
returns a

returns a
x xxdata_version () ixx
if
structure had

increased , the get method of the source

been changed).

* xxget(key, default):xx

default will be returned.

:param source_instance: The source instance

:type source instance: instance

rparam cache_filename: File name, where the

itype cache filename: str

:param load all on init: True will load all

instance

returns the property for a key.

the cache usage are given.

“source instance’

id of the source's source or None, if you don't

all available keys.
version number of the current data (it should be

returns improved values or the data

If key does not exists,

holding the data

properties are stored as cache

data from the source instance, when the cache

will be initialised the first time.

itype load all _on_init: bool

:param callback on data storage: The callback will be executed every time when the cache file
is stored. It will be executed with the instance of this class as first argument.

:type callback on data storage: method

:param max_age: The maximum age of the cached data in seconds or None for no maximum age.

ctype max_age: int or None

:param store on get: False will
default)®

‘type store on get:

method. You need to

bool

prevent cache storage with execution

of the " .get(key,

store the cache somewhere else.

admonition:: The cache will be used, if all following conditions are given
x The key is in the list returned by “.keys()' method of the “source instance’
x The key is not in the list of keys added by the '.add_source get keys() method
* The cache age is less then the given max_ age parameter or the given max_age is
None.
% The uid of the source instance (e.g. a checksum or unique id of the source) is
identically to to uid stored in the cache.

37/]

99

100

101

103

104

106

107

108

109

110

111

114

115

116

117

118

119

Unittest for caching

* The data version of the “source instance’ is <= the data version stored in the

cache.
* The value is available in the previous stored information

*x Example 1 %

literalinclude :: caching/ examples /property cache pickle.py
Will result on the first execution to the following output (with a long execution time):
literalinclude :: caching/ examples /property cache pickle.log 1st

With every following execution the time cosumption my by much smaller:

literalinclude :: caching/ examples /property cache pickle.log
nnu
DATA VERSION TAG = ' property cache data version '
STORAGE_VERSION_TAG = ' _storage version_ '
UID_TAG = ' property cache uid '
DATA TAG = ' data '
AGE_TAG = ' age_ '
#
STORAGE VERSION = 1
def _ init_ (self, source instance, cache filename, load_ all on_init=False,
callback on data storage=None, max_ age=None, store on get=True, return_ source on_ none=False):
self. source_instance = source_instance
self. cache_filename = cache_filename
self. load all on init = load all on init
self. callback_on data_ storage = callback on_ data storage
self. max_age = max_age
self. store on get = store on get
self. return_source_on_none = return_source_on_none
#
self. source get keys = []
self. cached props = None

def add source get keys(self, keys):

mwnn

This will add one or more keys to a list of keys which will always be provided by the
source instance’ instead of the cache.

:param keys: The key or keys to be added
ctype keys: list, tuple, str
mnn
if type(keys) in [list, tuple]:

self. source get keys.extend(keys)
else:

self. source get keys.append(keys)

def full update(self, sleep between keys=0):

mon

With the execution of this method, the complete source data which needs to be cached,
will be read from the source instance

and the resulting cache will be stored to the given file.

:param sleep between keys: Time to sleep between each source data generation
:type sleep between keys: float, int

hint:: Use this method, if you initiallised the class with “store on get=False"
mwnn

38 / A1)

Unittest for caching

self. load source(sleep between keys=sleep between keys)
self. save cache()

def get(self, key, default=None):

mnn

Method to get the cached property. If the key does not exists in the cache or
source instance , “default® will be returned.

:param key: key for value to get.
:param default: value to be returned, if key does not exists.
creturns: value for a given key or default value.
monn
Init cache
if self. cached props is None:
self. _init_cache()
ldentify old cache
if self. max age is None:
cache old = False
else:
cache old = time.time() — self. cached props[self .AGE TAG].get(self. key filter(key),
0) > self. max_age
if cache old:
logger.debug("The cached value is old, cached value will be ignored")
Return cached value
if not cache old and key not in self. source get keys and self. key filter(key) in self.
__cached props[self .DATA TAG]:
logger.debug("Providing property for '%s' from cache", key)
rv = self. cached props[self DATA TAG].get(self. key filter(key), default)
if rv is not None or not self. return source on none:
return rv
Create cache and return value
if key in self. source instance.keys():
logger.debug("Loading property for key='%s' from source instance", key)
val = self. source instance.get(key, None)
if self. store on get:
tm = int(time.time())
logger.debug("Adding key=%s, value=%s with timestamp=%d to chache", key, val, tm)
self. cached props[self .DATA TAG][self. key filter(key)] = val
self. cached props[self AGE TAG][self. key filter(key)] = tm
self. save cache()
else:
return val
cached data = self. cached props[self DATA TAG].get(self. key filter(key), default)
if cached data is None and self. return source on none:
return self. source instance.get(key, default)
return cached data
else:
if key not in self. source instance.keys():
logger.debug("Key '%s' is not in cached keys. Uncached data will be returned.",
key)
else:
logger.debug("Key '%s' is excluded by .add source get keys(). Uncached data will
be returned.", key)
return self. source instance.get(key, default)

def data version(self):
if self. cached props is None:
return None
else:
return self. cached props.get(self .DATA VERSION TAG, None)

39/ p]

Unittest for caching

def storage version(self):
if self. cached props is None:
return None
else:
return self. cached props.get(self .STORAGE VERSION TAG, None)

def init cache(self):

load cache = self. load cache()
uid = self. source instance.uid() != self. wuid()
try:
data version = self. source instance.data version() > self. data_ version()
except TypeError:
data version = True
try:
storage version = self. storage version() != self . STORAGE_ VERSION

except TypeError:
storage version = True
#
if not load cache or uid or data version or storage version:
if load cache:
if self. uid() is not None and uid:

logger.debug("Source uid changed, ignoring previous cache data")
if self. data version() is not None and data version:
logger.debug("Data version increased, ignoring previous cache data")
if storage_version:
logger.debug("Storage version changed, ignoring previous cache data")
self. cached props = {self AGE_TAG: {}, self .DATA TAG: {}}
if self. load all _on_ init:
self. load source()

self. cached props[self . UID_TAG] = self. source instance.uid()
self. cached props[self .DATA VERSION TAG] = self. source instance.data_version()
self. cached props[self .STORAGE VERSION TAG] = self .STORAGE VERSION

def _load only(self):
with open(self. cache filename, 'rb') as fh:
self. cached props = pickle.load(fh)
logger.debug('Loading properties from cache (%s)', self. cache filename)

def _load cache(self):
if os.path.exists(self. cache_filename):

try:

self. load_only()
except:

logger.exception("Exception while loading cache file %s", self. cache filename)
else:

return True
else:
logger.debug('Cache file does not exists (yet).'")
return False

def key filter(self, key):
return key

def load source(self, sleep between keys=0):
if self. cached props is None:
self. init cache()
logger.debug('Loading all data from source — %s', repr(self. source instance.keys()))

for key in self. source instance.keys():
if key not in self. source get keys:
data = self. source instance.get(key)
if data is not None:

/10/

266

269

298

209

300

301

Unittest for caching

self. cached props[self .DATA TAG][self. key filter(key)] = data

self. cached props[self .AGE TAG][self. key filter(key)] = int(time.time())

time.sleep(sleep between keys)

def save only(self):
with open(self. cache filename, 'wb') as fh:
pickle .dump(self. cached props, fh)
logger.debug('cache—file stored (%s)', self. cache filename)

def save cache(self):
self. save only()
if self. callback _on_ data storage is not None:
self. callback on data storage(self)

def uid(self):
if self. cached props is None:
return None
else:
return self. cached props.get(self.UD TAG, None)

class property cache json(property cache pickle):

See also parent :py:class: property cache pickle® for detailed information.
important ::
* This class uses json. You should *xxonly*x use keys of type string!
x Unicode types are transfered to strings

See limitations of json.

*x Example 1% %

literalinclude :: caching/ examples /property cache json.py
Will result on the first execution to the following output (with a long execution time):
literalinclude :: caching/ examples /property cache json.log 1st

With every following execution the time cosumption my by much smaller:

literalinclude :: caching/ examples /property cache json.log
nuu

def load only(self):
with open(self. cache filename, 'r') as fh:
self. cached props = json.load(fh)
logger.debug('Loading properties from cache (%s)', self. cache filename)

def save only(self):
with open(self. cache filename, 'w') as fh:
json .dump(self. cached props, fh, sort keys=True, indent=4)
logger.debug('cache—file stored (%s)', self. cache filename)

41/

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 3.13.5 (final)
	Coverage Statistic

	Tested Requirements
	Cache generation (json /pickle)
	Data generation from source instance, if no cache is available
	Create complete cache from the given data instance
	Create cache partially from a given data instance by get method
	Ignore corrupt cache file

	Load spreading for full update
	Full update with delay between each data generation for the cache
	No cache generation if disabled

	Dump cache conditions
	Dump cache if time is expired
	Dump cache if data version increases
	Dump cache if data uid is changed
	Dump cache if storage version is changed
	Dump cache if stored value is 'None'

	Definition of uncached data
	Define uncached data

	Callback on data storage
	If no data is changed, no callback will be executed
	Callback execution in case of a full update
	Callback execution in case of get function

	Trace for testrun with python 3.13.5 (final)
	Tests with status Info (15)
	 REQ-0003
	 REQ-0001
	 REQ-0005
	 REQ-0015
	 REQ-0004
	 REQ-0002
	 REQ-0006
	 REQ-0007
	 REQ-0008
	 REQ-0009
	 REQ-0014
	 REQ-0010
	 REQ-0011
	 REQ-0012
	 REQ-0013

	Test-Coverage
	 caching
	 caching.__init__.py

