Unittest for caching

August 15, 2025

Unittest for caching

Contents
(l__Test Informationl 3
[L.L1 Test Candidate Information| o 3
[L.2 Unittest Informationl 3
1.3 Test System Information| 3
[2_Statistid 3
2.1 Test-Statistic for testrun with python 3.13.5 (final)l 3
2.2 Coverage Statistic] 4
[3 Tested Requirements| 5
[3.1 Cache generation (json /pickle)[. 5
[3.1.1 Data generation from source instance, if no cache is available] 5
13.1.2 Create complete cache from the given data instance|. 6
13.1.3 Create cache partially from a given data instance by get method| 6
3.1.4 Ignore corrupt cache file]. 7
3.2 Load spreading for full update] 8
13.2.1 Full update with delay between each data generation for the cache|. 8
13.2.2 No cache generation if disabled|. 8
3.3 Dump cache conditions| 9
3.3.1 Dump cache if time is expired| 9
13.3.2 Dump cache if data version increases|. 10
13.3.3 Dump cache if data uid is changed| 11
13.3.4 Dump cache if storage version is changed| 12
13.3.5 Dump cache if stored value is 'None'|. 13
B.4_ Definition of uncached datal 14
341 Defineuncached datal 14
3.6 Callback on data storage|l 15
13.5.1 If no data is changed, no callback will be executed| 15
13.5.2 Callback execution in case of a full update|. 15
13.5.3 Callback execution in case of get function| Lo 16

Unittest for caching

[A" Trace for testrun with python 3.13.5 (final)| 17
[A.1 Tests with status Info (15)] 17
ATT REQ-0003] . - - - o o 17
AT2REQ-000T] oo 18
AT3TREQ-0005] . - . o o o e e 20

4 S00I0] . 22

5 S0004] . . 22

AT6 _REQO002] . . . o o oo e e e e 23

1.7 0000 . .. e 24

1.8 0007 | - . L 27

ATO REQ-0008] . . . - o o o e 29

[ATTI0 REQ-0000] o o o e 31

ATIT REQ-O0TA] o o 33

ATI2 REQO0I0] o o oot 35

ATIZ REQOOII] . . . o oo oo e e e e 36

14 0012) o 37

.1.15 0013 | L s 37

[B Test-Coverage) 38
... 38
[B.1.1 caching.__init__.py | 38

NE

Unittest for caching

1 Test Information

1.1 Test Candidate Information

The Module caching is designed to store information in json or pickle files to support them much faster then

generating them from the original source file. For more Information read the documentation.

Library Information

Name caching

State Released

Supported Interpreters python3

Version 52¢c295e7e5e9060dd96adbed34253518

Dependencies

1.2 Unittest Information

Unittest Information

Version 17bb378e039385c5fbedba201elabdf9
Testruns with python 3.13.5 (final)

1.3 Test System Information

System Information

Architecture 64bit

Distribution Debian GNU/Linux 13 trixie

Hostname ahorn

Kernel 6.12.38+deb13-amd64 (#1 SMP PREEMPT_DYNAMIC Debian 6.12.38-1 (2025-07-16))
Machine x86_64

Path /home/dirk/work /unittest_collection/caching

System Linux

Username dirk

2 Statistic

2.1
Number of tests 15
Number of successfull tests 15

Number of possibly failed tests 0

Number of failed tests 0
Executionlevel Full Test (all defined tests)
Time consumption 8.090s

3/

Unittest for caching

2.2 Coverage Statistic

Module- or Filename Line-Coverage Branch-Coverage

caching 97.3% 95.8%
caching.__init__.py 97.3%

4/

Unittest for caching

3 Tested Requirements

3.1 Cache generation (json /pickle)
3.1.1 Data generation from source instance, if no cache is available

Description
If the cache is not available, the data shall be generated from the source instance.

Reason for the implementation
There shall be the posibility to create the cache on demand, so the fallback is to generate the data from the source
instance.

Fitcriterion

Caching is called without previous cache generation and the data from the source instance is completely available.

Testresult
This test was passed with the state: . See also full trace in section [A.1.T]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/ __init__.py (331)
Start-Time: 2025-08-15 19:13:27,542
Finished-Time: 2025-08-15 19:13:27,545
Time-Consumption 0.003s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '__string__' and Type is <class
'str'>).

Data from cached instance with key=unicode is correct (Content '__unicode_' and Type is
<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float">).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
'list'>).

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4":
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

Data from cached instance with key=unknown_key is correct (Content 5 and Type is <class
'int'>).

5/

Unittest for caching

3.1.2 Create complete cache from the given data instance

Description
There shall be a method caching all information from the given instance.

Reason for the implementation
Independent usage of data generation and data usage (e.g. the user requesting the data is not able to create the data).

Fitcriterion

Caching is called twice with different data instances and the cached data from the first call is completely available.

Testresult
This test was passed with the state: . See also full trace in section [A.1.2]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/ __init__.py (331)
Start-Time: 2025-08-15 19:13:27,545
Finished-Time: 2025-08-15 19:13:27,548
Time-Consumption 0.003s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_pickle’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str’>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1': 1, '2': "two’, '3": '3’, "4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

Data from cached instance with key=unknown_key is correct (Content 5 and Type is <class
"int'>).

3.1.3 Create cache partially from a given data instance by get method

Description
On getting data from the cached instance, the information shall be stored in the cache file.

Reason for the implementation
There shall be the posibility to create the cache on demand, so the fallback is to generate the data from the source
instance.

6/

Unittest for caching

Fitcriterion
Caching is called twice with different data instances and the cached data from the first call is available for all keys cached
on the first run.

Testresult
This test was passed with the state: . See also full trace in section [A.1.3]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work /unittest_collection /caching/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 19:13:27,548
Finished-Time: 2025-08-15 19:13:27,554
Time-Consumption 0.006s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str’>).
Data from cached instance with key=unicode is correct (Content '__unicode_' and Type is
<class 'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, "two’, '3", 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": 1, '2": 'two’, '3": '3", '4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

Data from cached instance with key=unknown_key is correct (Content 5 and Type is <class
'int'>).

3.1.4 Ignore corrupt cache file

Description
Ignore corrupt cachefile, while loading cache.

Reason for the implementation
Suppress exceptions while caching.

Fitcriterion

Loading cache results in no exception, when cache file is empty.

Testresult
This test was passed with the state: . See also full trace in section [A.1.4]
Testrun: python 3.13.5 (final)

7/

Unittest for caching

Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 19:13:27,555

Finished-Time: 2025-08-15 19:13:27,558

Time-Consumption 0.003s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Creating empty cache file /home/dirk /work/unittest_collection/caching/unittest/output_data/

cache_data_test_corrupt_cache.json.
Empty cache file ignored on loading cache.

3.2 Load spreading for full update

3.2.1 Full update with delay between each data generation for the cache

Description

The full update method shall pause for a given time between every cached item.

Reason for the implementation

Load spreading in case of cyclic called .full _update().

Fitcriterion

The time consumption of the method .full_update(<sleep_time>) shall consume n times the given sleep_time.

Where n is the number of items which will be cahed from the source instance.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.5]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/ __init__.py (331)
Start-Time: 2025-08-15 19:13:27,558

Finished-Time: 2025-08-15 19:13:33,566

Time-Consumption 6.008s

Testsummary:

Info Prepare: Cleanup before testcase execution

Consumed time for full_update is greater expectation (Content 6.006384372711182 and Type

is <class 'float’>).
Consumed time for full_update is greater expectation (Content 6.006384372711182 and Type

is <class 'float’>).

3.2.2 No cache generation if disabled

Description

The cache shall be generated by the .get () method, only if the cache instance parameter store_on_get is set to True.

8/

Unittest for caching

Reason for the implementation
Independent usage of data generation and data usage (e.g. the user requesting the data is not able to create the data).

Fitcriterion
Create a caching instance with store_on_get set to False. Get every item of the source instance with the .get ()
method and check that no cache file exists.

Testresult
This test was passed with the state: . See also full trace in section [A.1.6]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/ __init__.py (331)
Start-Time: 2025-08-15 19:13:33,566
Finished-Time: 2025-08-15 19:13:33,570
Time-Consumption 0.004s
Testsummary:
Info Prepare: Cleanup before testcase execution

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, "two’, '3", 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": 1, '2": 'two’, '3": '3, '4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

The cache file (/home/dirk/work/unittest_collection/caching/unittest/output_data/
cache_data_test_full_update_sleep.json) shall not exist is correct (Content False and Type
is <class 'bool">).

3.3 Dump cache conditions
3.3.1 Dump cache if time is expired

Description
Dump the cached item, if this item is older then the given expirery time.

Reason for the implementation
Ensure, that the cache is updated from time to time. For example for items which do not change very often.

Fitcriterion
Create a cache instance, cache some data. Intialise a second caching instance with a different source instance and a

9/

Unittest for caching

expire time. Wait for longer than the given expiry time and check that the items from the second source instance are

returned.
Testresult
This test was passed with the state: . See also full trace in section [A.1.7]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 19:13:33,571
Finished-Time: 2025-08-15 19:13:35,588
Time-Consumption 2.017s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str’>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float">).

Data from cached instance with key=list is correct (Content [1, "two’, '3", 4] and Type is <class
'list">).

Data from cached instance with key=dict is correct (Content {'1": 1, '2": 'two’, '3": '3’, '4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

Data from cached instance with key=str is correct (Content '__string__' and Type is <class
'str'>).

Data from cached instance with key=unicode is correct (Content '__unicode_' and Type is
<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4":
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

3.3.2 Dump cache if data version increases

Description
Dump the complete cache, if the data version of the source instance is increased.

Reason for the implementation
The data version is part of the source instance. Increasing the data version indicates, that the source instance generates

10/ 43

Unittest for caching

the data in another way or the structure of the data is changed. In that condition, the cache needs to be ignored.

Fitcriterion

Create a cached instance and cache some items. Generate a second cached instance with different source data and a
increased data version. Ensure, that the cache instance returns the values from the second source. It is required to set
load_all on_init to False and store_on_get to True.

Testresult
This test was passed with the state: . See also full trace in section [A.1.§]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/ __init__.py (331)
Start-Time: 2025-08-15 19:13:35,588
Finished-Time: 2025-08-15 19:13:35,596
Time-Consumption 0.008s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '__string__' and Type is <class
'str’>).

Data from cached instance with key=unicode is correct (Content
<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int’>).

' 1

__unicode__" and Type is

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4":
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

3.3.3 Dump cache if data uid is changed

Description
Dump the complete cache, if the data uid of the source instance is changed.

Reason for the implementation
The data uid is part of the source instance. Changing the data uid indicates, that the source of the data created by the
source instance is changed (e.g. the uid of a file or folder) and the cache needs to be ignored.

Fitcriterion
Create a cached instance and cache some items. Generate a second cached instance with different source data and
a changed data uid. Ensure, that the cache instance returns the values from the second source. It is required to set

load-all on_init to False and store_on_get to True.

11/[3

Unittest for caching

Testresult
This test was passed with the state: . See also full trace in section [A.1.9]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 19:13:35,596
Finished-Time: 2025-08-15 19:13:35,606
Time-Consumption 0.010s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '_string__' and Type is <class
'str’>).

Data from cached instance with key=unicode is correct (Content '__unicode_' and Type is
<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1': '1’, '2": 2, '3": 'three’, '4"
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

3.3.4 Dump cache if storage version is changed

Description

Dump the complete cache, if the storage version of the caching class is changed.

Reason for the implementation
The storage version is part of the caching class. Changing the storage version indicates, that the previously stored cache
is not compatible due to new data storage and the cache needs to be ignored.

Fitcriterion

Create a cached instance and cache some items. Generate a second cached instance with different source data and a
changed storage version. Ensure, that the cache instance returns the values from the second source. It is required to
set load_all_ on_init to False and store_on_get to True.

Testresult
This test was passed with the state: . See also full trace in section [A.1.10]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/ __init__.py (331)
Start-Time: 2025-08-15 19:13:35,606
Finished-Time: 2025-08-15 19:13:35,620

12/[43

Unittest for caching

Time-Consumption 0.014s

Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '__string__' and Type is <class
'str'>).
Data from cached instance with key=unicode is correct (Content '__unicode__

<class 'str'>).
Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

and Type is

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float">).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
'list'>).

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4":
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

3.3.5 Dump cache if stored value is 'None’

Description

Dump the cached item, if the stored value is None.

Reason for the implementation
If no information is stored in the cache, the data shall be generated by the source instance.

Fitcriterion

Create a cached instance and cache some items. One needs to have None as value. Generate a second cached instance
with different source data (especially, the previous item with value None needs to have a not None value. Ensure, that
the caching instance returns not None from the second source.

Testresult
This test was passed with the state: . See also full trace in section [A.1.11]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/ __init__.py (331)
Start-Time: 2025-08-15 19:13:35,621
Finished-Time: 2025-08-15 19:13:35,626
Time-Consumption 0.005s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

13 /[43

Unittest for caching

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1': 1, '2": "two’, '3": '3’, "4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

3.4 Definition of uncached data

3.4.1 Define uncached data

Description

It shall be possible to define items which are not cached.

Reason for the implementation
If there is dynamic changed data in the source instance, it shall be possible to define these items as non cached to get
them always from the source instance.

Fitcriterion

Create a cached instance and cache some items. Generate a second cached instance with different source data and set
at least one item as source item. This item should be previously cached. Ensure, that the source item isis the one from
the second source instance.

Testresult
This test was passed with the state: . See also full trace in section [A.1.12]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 19:13:35,626
Finished-Time: 2025-08-15 19:13:35,631
Time-Consumption 0.005s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached
Data from cached instance with key=str is correct (Content '__string__' and Type is <class
'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).

14/

Unittest for caching

Data from cached instance with key=dict is correct (Content {'1': 1, '2": "two’, '3": '3’, 4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

3.5 Callback on data storage
3.56.1 If no data is changed, no callback will be executed

Description

The store callback shall not be executed, if no cache is stored.

Reason for the implementation
Do actions, if cache data is stored to disk.

Fitcriterion

Initialise the cache instance without storing cache data. Ensure, that the callback is never executed.

Testresult
This test was passed with the state: . See also full trace in section [A.1.13]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 19:13:35,631
Finished-Time: 2025-08-15 19:13:35,632
Time-Consumption 0.001s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Installing save_callback with no get or full_update execution.

Save callback execution counter is correct (Content 0 and Type is <class 'int">).
Save callback execution counter is correct (Content None and Type is <class 'NoneType'>).

3.5.2 Callback execution in case of a full update

Description
The storage callback shall be called once on every full_update().

Reason for the implementation

Do actions, if cache data is stored to disk.

Fitcriterion
Initialise the cache instance and ensure, that the callback is executed as often as the .full update() method is
executed.

15/

Testresult

This test was passed with the state:

Unittest for caching

. See also full trace in section [A.1.14]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 19:13:35,632

Finished-Time: 2025-08-15 19:13:35,634

Time-Consumption 0.002s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Installing save_callback and execute full_update.

Save callback execution counter is correct (Content 1 and Type is <class 'int">).
Save callback execution counter is correct (Content <caching.property_cache_json object at
0x7f7c48d81b30> and Type is <class 'caching.property_cache_json'>).

3.56.3 Callback execution in case of get function

Description

The storage callback, shall be called once on every .get (), if storage_on_get is set to True.

Reason for the implementation

Do actions, if cache data is stored to disk.

Fitcriterion

Initialise the cache instance and ensure, that the callback is executed as often as the .get () method is executed.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.15]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection/caching/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 19:13:35,634

Finished-Time: 2025-08-15 19:13:35,636

Time-Consumption 0.002s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Installing save_callback and execute a single get.

Info Installing save_callback and execute a single get.

Save callback execution counter is correct (Content 2 and Type is <class 'int">).
Save callback execution counter is correct (Content <caching.property_cache_json object at
0x7f7c48d80cd0> and Type is <class 'caching.property_cache_json'>).

16 /[¢3]

Unittest for caching

A Trace for testrun with python 3.13.5 (final)

A.1 Tests with status Info (15)
A.1.1 REQ-0003

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Cache file does not exists (yet).
Loading property for key='str' from source instance
Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

Loading property for key='unicode' from source instance

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class
- 'str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)
Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance

Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

17,'

Unittest for caching

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class

< 'list'>)

Data from cached instance with key=dict is correct (Content {'1': '1’, '2": 2, '3": 'three’, '4": "4’} and
Type is <class 'dict’>).

Loading property for key='dict' from source instance
Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':
— 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Loading property for key='none' from source instance
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

Data from cached instance with key=unknown _key is correct (Content 5 and Type is <class 'int'>).

Key 'unknown_key' is not in cached_keys. Uncached data will be returned.
Result (Data from cached instance with key=unknown_key): 5 (<class 'int'>)

Expectation (Data from cached instance with key=unknown_key): result = 5 (<class 'int'>)

A.1.2 REQ-0001

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_pickle’ with a class holding the data to be cached

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_load_on_init.pkl)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da
— ta/cache_data_test_load_on_init.pkl)

Providing property for 'str' from cache

Result (Data from cached instance with key=str): 'string' (<class 'str'>)

18 / |43

Unittest for caching

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float’>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, ‘3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
s '1ist'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
- '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'mone' from cache
Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

Data from cached instance with key=unknown _key is correct (Content 5 and Type is <class 'int’>).

Key 'unknown_key' is not in cached_keys. Uncached data will be returned.
Result (Data from cached instance with key=unknown_key): 5 (<class 'int'>)

Expectation (Data from cached instance with key=unknown_key): result = 5 (<class 'int'>)

19 / |43

Unittest for caching

A.1.3 REQ-0005

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Cache file does not exist on filesystem.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading property for key='str' from source instance
Adding key=str, value=string with timestamp=1755278007 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_load_on_init.json)
Loading property for key='integer' from source instance
Adding key=integer, value=17 with timestamp=1755278007 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_load_on_init.json)

Loading property for key='list' from source instance

Adding key=list, value=[1, 'two', '3', 4] with timestamp=1755278007 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Loading property for key='dict' from source instance

Adding key=dict, value={'1': 1, '2': 'two', '3': '3', '4': 4} with timestamp=1755278007 to

— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Loading property for key='none' from source instance

Adding key=none, value=None with timestamp=1755278007 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_load_on_init.json)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da
- ta/cache_data_test_load_on_init.json)

Providing property for 'str' from cache

Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

Loading property for key='unicode' from source instance

20/ 43

Adding key=unicode, value=__unicode_

with timestamp=1755278007 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class

< 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance

Adding key=float, value=2.71828 with timestamp=1755278007 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache

Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)
Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
o« 'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
< (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
< '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'none' from cache
Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

Data from cached instance with key=unknown key is correct (Content 5 and Type is <class 'int'>).

Key 'unknown_key' is not in cached_keys. Uncached data will be returned.
Result (Data from cached instance with key=unknown_key): 5 (<class 'int'>)

Expectation (Data from cached instance with key=unknown_key): result = 5 (<class 'int'>)

Unittest for caching

A.1.4 REQ-0015

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Creating empty cache file /home/dirk/work/unittest_collection/caching/unittest/output_data/

cache_data_test_corrupt_cache.json.

Empty cache file ignored on loading cache.

Exception while loading cache file /home/dirk/work/unittest_collection/caching/unittest/outpu

— t_data/cache_data_test_corrupt_cache. json
A.1.5 REQ-0004

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Cache file does not exist on filesystem.

Consumed time for full_update is greater expectation (Content 6.006384372711182 and Type is <class
'float'>).

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_full_update_sleep.json)

Result (Consumed time for full_update): 6.006384372711182 (<class 'float'>)

Expectation (Consumed time for full_update): result > 6.0 (<class 'float'>)

Consumed time for full_update is greater expectation (Content 6.006384372711182 and Type is <class
'float'>).

Result (Consumed time for full_update): 6.006384372711182 (<class 'float'>)

Expectation (Consumed time for full_update): result < 6.5 (<class 'float'>)

22/

Unittest for caching

A.1.6 REQ-0002

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
Providing property for 'str' from cache

Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int">).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float’>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, ‘3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class

- 'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache

23 /43

Unittest for caching

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
- '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'none' from cache
Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

The cache file (/home/dirk /work /unittest_collection /caching/unittest/output_data/
cache_data_test_full_update_sleep.json) shall not exist is correct (Content False and Type is <class
'bool’>).

Result (The cache file (/home/dirk/work/unittest_collection/caching/unittest/output_data/cach
— e_data_test_full_update_sleep.json) shall not exist): False (<class 'bool'>)

Expectation (The cache file (/home/dirk/work/unittest_collection/caching/unittest/output_data
— /cache_data_test_full_update_sleep.json) shall not exist): result = False (<class 'bool'>)

A.1.7 REQ-0006

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da
— ta/cache_data_test_dump_cache. json)

Providing property for 'str' from cache
Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache

24 / |43

Unittest for caching

Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float'>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)
Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
- 'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
- '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'none' from cache
Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

The cached value is old, cached value will be ignored

Loading property for key='str' from source instance

Adding key=str, value=__string__ with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)

25 /43

Unittest for caching

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

The cached value is old, cached value will be ignored
Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
< a_test_dump_cache. json)

_unicode__' (<class 'str'>)

Result (Data from cached instance with key=unicode) :

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class
- 'str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int">).

The cached value is old, cached value will be ignored
Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

The cached value is old, cached value will be ignored
Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

The cached value is old, cached value will be ignored
Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
— '1iSt'>)

26 / 43

Unittest for caching

Data from cached instance with key=dict is correct (Content {'1': '1’, '2": 2, '3": 'three’, '4": "4’} and
Type is <class 'dict'>).

The cached value is old, cached value will be ignored

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1755278015 to
— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

— 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

The cached value is old, cached value will be ignored
Loading property for key='none' from source instance
Adding key=none, value=not None with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

A.1.8 REQ-0007

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)

27/ |43

Data version increased, ignoring previous cache data
Loading property for key='str' from source instance
Adding key=str, value=__string__ with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=str): '__string__' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

Loading property for key='unicode' from source instance
Adding key=unicode, value=__unicode__ with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class
< 'str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float'>).

Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)
Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
< 'list'>)

&

Unittest for caching

Data from cached instance with key=dict is correct (Content {'1": '1', '2": 2, '3": 'three’, '4": '4'} and
Type is <class 'dict'>).

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1755278015 to
— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

— 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Loading property for key='none' from source instance
Adding key=none, value=not None with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

A.1.9 REQ-0008

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)

Source uid changed, ignoring previous cache data

29/ 43

Loading property for key='str' from source instance
Adding key=str, value=__string__ with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=str): '__string__' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string_ _'

(<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

_unicode__' (<class 'str'>)

Result (Data from cached instance with key=unicode): '

Expectation (Data from cached instance with key=unicode): result = '__unicode__

< 'str'>)

' (<class

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float'>).

Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
- 'list'>)

&

Unittest for caching

Data from cached instance with key=dict is correct (Content {'1": '1', '2": 2, '3": 'three’, '4": '4'} and
Type is <class 'dict'>).

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1755278015 to
— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

— 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Loading property for key='none' from source instance
Adding key=none, value=not None with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

A.1.10 REQ-0009

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)

Storage version changed, ignoring previous cache data

31/ 143

Loading property for key='str' from source instance
Adding key=str, value=__string__ with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=str): '__string__' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string_ _'

(<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

_unicode__' (<class 'str'>)

Result (Data from cached instance with key=unicode): '

Expectation (Data from cached instance with key=unicode): result = '__unicode__

< 'str'>)

' (<class

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float'>).

Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
- 'list'>)

&

Unittest for caching

Data from cached instance with key=dict is correct (Content {'1": '1', '2": 2, '3": 'three’, '4": '4'} and
Type is <class 'dict'>).

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1755278015 to
— chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4' }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

— 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Loading property for key='none' from source instance
Adding key=none, value=not None with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

A.1.11 REQ-0014

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)

Providing property for 'str' from cache

33/ 143

Unittest for caching

Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float’>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
s '1ist'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3", '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
- '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Providing property for 'none' from cache
Loading property for key='none' from source instance
Adding key=none, value=not None with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

34 / |43

Unittest for caching

A.1.12 REQ-0010

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_source_key_def.json)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Loading properties from cache (/home/dirk/work/unittest_collection/caching/unittest/output_da
< ta/cache_data_test_source_key_def.json)

Loading property for key='str' from source instance

Adding key=str, value=__string__ with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat
— a_test_source_key_def.json)

Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/cache_dat

— a_test_source_key_def.json)

35/ |43

Unittest for caching

Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
— 'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache
Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
< (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
« '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'none' from cache
Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

A.1.13 REQ-0011

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Installing save_callback with no get or full_update execution.

Save callback execution counter is correct (Content 0 and Type is <class 'int'>).

Result (Save callback execution counter): 0 (<class 'int'>)

Expectation (Save callback execution counter): result = 0 (<class 'int'>)

Save callback execution counter is correct (Content None and Type is <class 'NoneType'>).

Result (Save callback execution counter): None (<class 'NoneType'>)

Expectation (Save callback execution counter): result = None (<class 'NoneType'>)

36 / |43

Unittest for caching

A.1.14 REQ-0012

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Cache file does not exist on filesystem.

Info Installing save_callback and execute full_update.

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/save_call
< back_callback. json)

Save callback execution counter is correct (Content 1 and Type is <class 'int'>).

Result (Save callback execution counter): 1 (<class 'int'>)

Expectation (Save callback execution counter): result = 1 (<class 'int'>)

Save callback execution counter is correct (Content <caching.property_cache_json object at
0x7f7c48d81b30> and Type is <class 'caching.property_cache_json'>).

Result (Save callback execution counter): <caching.property_cache_json object at

— 0x7£7c48d81b30> (<class 'caching.property_cache_json'>)

Expectation (Save callback execution counter): result = <caching.property_cache_json object at
— 0x7£7c48d81b30> (<class 'caching.property_cache_json'>)

A.1.15 REQ-0013

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Installing save_callback and execute a single get.

Cache file does not exists (yet).
Loading property for key='str' from source instance
Adding key=str, value=string with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/save_call
— back_callback. json)

37/

1

Unittest for caching

Info Installing save_callback and execute a single get.

Loading property for key='unicode' from source instance
Adding key=unicode, value=unicode with timestamp=1755278015 to chache

cache-file stored (/home/dirk/work/unittest_collection/caching/unittest/output_data/save_call
— back_callback. json)

Save callback execution counter is correct (Content 2 and Type is <class 'int'>).

Result (Save callback execution counter): 2 (<class 'int'>)

Expectation (Save callback execution counter): result = 2 (<class 'int'>)

Save callback execution counter is correct (Content <caching.property_cache_json object at
0x7f7c48d80cd0> and Type is <class 'caching.property_cache_json’>).

Result (Save callback execution counter): <caching.property_cache_json object at
— 0x7£7c48d80cd0> (<class 'caching.property_cache_json'>)

Expectation (Save callback execution counter): result = <caching.property_cache_json object at
— 0x7£7c48d80cd0> (<class 'caching.property_cache_json'>)

B Test-Coverage

B.1 caching

The line coverage for caching was 97.3%
The branch coverage for caching was 95.8%

B.1.1 caching.__init__.py

The line coverage for caching.__init__.py was 97.3%
The branch coverage for caching.__init__.py was 95.8%

#!/usr/bin/env python

> # —— coding: utf—8 —x—

s #

caching (Caching Module)

s *x Author :xx

o * Dirk Alders <sudo—dirk@mount—mockery.de>

*x Description :**
This Module supports functions and classes for caching e.g. properties of other instances.

** Submodules:*x*

38/

18

19

21

22

24

25

26

27

29

30

31

32

40

41

42

43

44

45

46

47

48

49

50

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

68

Unittest for caching

x :class: caching.property cache json’
x :class: caching.property cache pickle"

sk Unittest :*x*

See also the :download: unittest <caching/ testresults /unittest.pdf>" documentation.
nun

__DEPENDENCIES = []

import json
import logging
import os
import pickle
import time

try:
from config import APP_NAME as ROOT LOGGER NAME
except ImportError:
ROOT_LOGGER_NAME = 'root '
logger = logging .getLogger (ROOT LOGGER NAME). getChild (_ _name)

__DESCRIPTION = """The Module {\\tt %s} is designed to store information in {\\tt json} or {\\
tt pickle} files to support them much faster then generating them from the original source
file .

For more Information read the documentation.""" % name .replace(' ', "\\ ')

"""The Module Description"""

__INTERPRETER = (3,)

""" The Tested Interpreter—Versions"""

class property cache pickle(object):
nuu
This class caches the data from a given “source instance . It takes the data from the cache
instead of generating the data from the “source instance ",
if the conditions for the cache usage are given.

admonition :: Required properties for the “source instance’

* *kuid():x* returns the unique id of the source's source or None, if you don't
want to use the unique id.

x xkkeys():xx returns a list of all available keys.

* *xdata version():xx returns a version number of the current data (it should be
increased , if the get method of the source instance returns improved values or the data
structure had been changed).

* xxget(key, default):*% returns the property for a key. If key does not exists,
default will be returned.

:param source instance: The source instance holding the data

:type source instance: instance

:param cache filename: File name, where the properties are stored as cache
itype cache filename: str

:param load all on init: True will load all data from the source instance, when the cache
will be initialised the first time.

ctype load all on init: bool

:param callback on data storage: The callback will be executed every time when the cache file
is stored. It will be executed with the instance of this class as first argument.

itype callback on data storage: method

:param max_age: The maximum age of the cached data in seconds or None for no maximum age.
:type max_age: int or None

:param store on get: False will prevent cache storage with execution of the ‘.get(key,
default)® method. You need to store the cache somewhere else.

39/ 43

76

86

87

88

98

99

100

101

102

104

105

106

108

109

110

111

112

116

Unittest for caching

:type store on get: bool

admonition :: The cache will be used, if all following conditions are given

* The key is in the list returned by °.keys()' method of the “source instance’

x The key is not in the list of keys added by the *.add_ source get keys()"

method

* The cache age is less then the given max age parameter or the given max age is

None.

* The uid of the source instance (e.g. a checksum or unique id of the source) is

identically to to uid stored in the cache.

* The data version of the “source instance’ is <= the data version
cache.
* The value is available in the previous stored information
x% Example :x %
literalinclude :: caching/ examples /property cache pickle.py
Will result on the first execution to the following output (with a long execution time):
literalinclude :: caching/ examples /property cache pickle.log 1st

With every following execution the time cosumption my by much smaller:

stored

in the

literalinclude :: caching/ examples /property cache pickle.log
nnu
DATA VERSION TAG = ' property cache data version '
STORAGE_VERSION_TAG = ' _storage version_ '
UID_TAG = ' property cache uid '
DATA TAG = ' data '
AGE_TAG = ' age_ '
#
STORAGE VERSION = 1
def _ init_ (self, source instance, cache filename, load_ all on_init=False,
callback on data storage=None, max_ age=None, store on get=True, return_ source on_ none=False):
self. source instance = source instance
self. cache_filename = cache_filename
self. load all on init = load all on init
self. callback on data storage = callback on data storage
self. max_age = max_age
self. store on get = store on get
self. return source on none = return source on_none
#
self. source get_ keys = []
self. cached props = None

def add_source get keys(self, keys):

This will add one or more keys to a list of keys which will always be provided by the

source instance’ instead of the cache.

:param keys: The key or keys to be added
itype keys: list, tuple, str
mnn
if type(keys) in [list, tuple]:

self. source get keys.extend(keys)
else:

self. source get keys.append(keys)

def full update(self, sleep between keys=0):

40/ 43

129

130

131

132

166

167

168

169

170

180

Unittest for caching

With the execution of this method, the complete source data which needs to be cached,
will be read from the source instance
and the resulting cache will be stored to the given file.

:param sleep between keys: Time to sleep between each source data generation

itype sleep between keys: float, int

hint:: Use this method, if you initiallised the class with “store on get=False"
mnn
self. load source(sleep between keys=sleep between keys)

self. save cache()

def get(self, key, default=None):

mon

Method to get the cached property. If the key does not exists in the cache or
source instance , “default® will be returned.

:param key: key for value to get.
:param default: value to be returned, if key does not exists.
creturns: value for a given key or default value.
nmonn
Init cache
if self. cached props is None:
self. _init_cache()
ldentify old cache
if self. max _age is None:
cache old = False
else:
cache old = time.time() — self. cached props[self AGE_TAG].get(self. key filter(key),
0) > self. max_age
if cache old:
logger.debug("The cached value is old, cached value will be ignored")
Return cached value
if not cache old and key not in self. source get keys and self. key filter(key) in self.
__cached props[self .DATA TAG]:
logger.debug("Providing property for '%s' from cache", key)
rv = self. cached props[self .DATA TAG].get(self. key filter(key), default)
if rv is not None or not self. return source on none:
return rv
Create cache and return value
if key in self. source instance.keys():
logger.debug("Loading property for key='%s' from source instance", key)
val = self. source instance.get(key, None)
if self. store on get:
tm = int(time.time())
logger.debug("Adding key=%s, value=%s with timestamp=%d to chache", key, val, tm)
self. cached props[self .DATA TAG][self. key filter(key)] = val
self. cached props[self AGE TAG][self. key filter(key)] = tm
self. save cache()
else:
return val
cached data = self. cached props[self DATA TAG].get(self. key filter(key), default)
if cached data is None and self. return source on none:
return self. source instance.get(key, default)
return cached data
else:
if key not in self. source instance.keys():
logger.debug("Key '%s' is not in cached keys. Uncached data will be returned.",

key)
else:

41/

Unittest for caching

181 logger.debug("Key '"%s' is excluded by .add source get keys(). Uncached data will
be returned.", key)

182 return self. source instance.get(key, default)

183

184 def data version(self):

185 if self. cached props is None:

186 return None

187 else:

188 return self. cached props.get(self .DATA VERSION TAG, None)

189

19 def _storage version(self):

191 if self. cached props is None:

102 return None

103 else:

104 return self. cached props.get(self .STORAGE VERSION TAG, None)

195

19 def _init_cache(self):

197 load cache = self. load cache()

108 uid = self. source instance.uid() != self. uid()

199 try:

200 data_version = self. source instance.data version() > self. data_version()

201 except TypeError:

202 data_version = True

203 try:

204 storage version = self. storage version() != self . STORAGE VERSION

205 except TypeError:

206 storage version = True

207 #

208 if not load cache or uid or data version or storage version:

209 if load cache:

210 if self. uid() is not None and uid:

211 logger.debug("Source uid changed, ignoring previous cache data")

212 if self. data version() is not None and data version:

213 logger.debug("Data version increased, ignoring previous cache data")

214 if storage version:

215 logger.debug("Storage version changed, ignoring previous cache data")

216 self. cached props = {self AGE_TAG: {}, self .DATA TAG: {}}

217 if self. load all on init:

218 self. load source()

219 self. cached props[self . UID_TAG] = self. source instance.uid()

220 self. cached props[self .DATA VERSION TAG] = self. source instance.data version()

221 self. cached props[self .STORAGE VERSION TAG] = self .STORAGE VERSION

223 def load only(self):

224 with open(self. cache filename, 'rb') as fh:

225 self. cached props = pickle.load(fh)

226 logger.debug('Loading properties from cache (%s)', self. cache filename)

228 def load cache(self):

229 if os.path.exists(self. cache filename):

230 try:

231 self. load only()

232 except:

233 logger.exception("Exception while loading cache file %s", self. cache filename)

234 else:

235 return True

236 else:

237 logger.debug('Cache file does not exists (yet).'")

238 return False

240 def key filter(self 6 key):

241 return key

42/

258

259

260

261

262

263

289

290

291

292

293

Unittest for caching

def load source(self, sleep between keys=0):
if self. cached props is None:
self. _init_cache()
logger.debug('Loading all data from source — %s', repr(self. source instance.keys()))

for key in self. source instance.keys():
if key not in self. source get keys:
self. cached props[self .DATA TAG][self. key filter(key)] = self. source instance.
get (key)
self. cached props[self AGE TAG][self. key filter(key)] = int(time.time())
time.sleep(sleep between keys)

def _save only(self):
with open(self. cache filename, 'wb') as fh:
pickle .dump(self. cached props, fh)
logger.debug('cache—file stored (%s)', self. cache filename)

def save cache(self):
self. save_only()
if self. callback _on_ data_ storage is not None:
self. callback on data storage(self)

def _uid(self):
if self. cached props is None:
return None
else:
return self. cached props.get(self.UD TAG, None)

class property cache json(property cache pickle):

See also parent :py:class: property cache pickle® for detailed information.
important ::
* This class uses json. You should *xxonly*x use keys of type string!
* Unicode types are transfered to strings

See limitations of json.

*x Example :x %

literalinclude :: caching/ examples /property cache json.py
Will result on the first execution to the following output (with a long execution time):
literalinclude :: caching/ examples /property cache json.log 1st

With every following execution the time cosumption my by much smaller:

literalinclude :: caching/ examples /property cache json.log
nuu

def _load only(self):
with open(self. cache filename, 'r') as fh:
self. cached props = json.load(fh)
logger.debug('Loading properties from cache (%s)', self. cache filename)

def save only(self):
with open(self. cache filename, 'w') as fh:
json .dump(self. cached props, fh, sort keys=True, indent=4)
logger.debug('cache—file stored (%s)', self. cache filename)

43 /3

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 3.13.5 (final)
	Coverage Statistic

	Tested Requirements
	Cache generation (json /pickle)
	Data generation from source instance, if no cache is available
	Create complete cache from the given data instance
	Create cache partially from a given data instance by get method
	Ignore corrupt cache file

	Load spreading for full update
	Full update with delay between each data generation for the cache
	No cache generation if disabled

	Dump cache conditions
	Dump cache if time is expired
	Dump cache if data version increases
	Dump cache if data uid is changed
	Dump cache if storage version is changed
	Dump cache if stored value is 'None'

	Definition of uncached data
	Define uncached data

	Callback on data storage
	If no data is changed, no callback will be executed
	Callback execution in case of a full update
	Callback execution in case of get function

	Trace for testrun with python 3.13.5 (final)
	Tests with status Info (15)
	 REQ-0003
	 REQ-0001
	 REQ-0005
	 REQ-0015
	 REQ-0004
	 REQ-0002
	 REQ-0006
	 REQ-0007
	 REQ-0008
	 REQ-0009
	 REQ-0014
	 REQ-0010
	 REQ-0011
	 REQ-0012
	 REQ-0013

	Test-Coverage
	 caching
	 caching.__init__.py

