Unittest for caching

September 29, 2024

Unittest for caching

Contents
(1 Test Information| 3
L1 Test Candidate Informationl 3
1.2 Unittest Informationl 3
1.3 Test System Information| 3
[2—Statistid 3
2.1 Test-Statistic for testrun with python 3.11.2 (final)l 3
2.2 Coverage Statistic] 4
[3 Tested Requirements| 5
[3.1 Cache generation (json /pickle)[. 5
[3.1.1 Data generation from source instance, if no cache is available] 5
13.1.2 Create complete cache from the given data instance|. 6
13.1.3 Create cache partially from a given data instance by get method| 6
3.2 Load spreading for full update] 7
13.2.1 Full update with delay between each data generation for the cache|. 7
13.2.2 No cache generation if disabled|. 9
3.3 Dump cache conditions| 10
13.3.1 Dump cache if time is expired| 10
13.3.2 Dump cache if data version Iincreases|. 11
13.3.3 Dump cache if data uid is changed| 12
13.3.4 Dump cache if storage version is changed|, 13
13.3.5 Dump cache if stored value'is 'None'|.o 13
3.4 Definition of uncached datal 14
B.41 Define uncached datal 14
3.5 Callback on data storage| 15
3.5.1 If no data is changed, no callback will be executed| 15
13.5.2 Callback execution in case of a full update|. 16
13.5.3 Callback execution in case of get function| 16

Unittest for caching

[A" Trace for testrun with python 3.11.2 (final)| 18
[A.1 Tests with status Info (14)] 18
|A.1.1 Data generation from source instance, if no cache is available] 18

|A.1.2 Create complete cache from the given data instance|. 19

|A.1.3 Create cache partially from a given data instance by get method| 21

IA.1.4 Full update with delay between each data generation for the cache|. 23

IA.1.5 No cache generation if disabled|. 24

IA.1.6 Dump cache if time is expired| e 26

IA.1.7 Dump cache if data version Iincreases|. 29

IA.1.8 Dump cache if data uid is changed| 32

IA.1.9 Dump cache if storage version is changed| 34

|A.1.10 Dump cache if stored value is 'None'| 36

[AIIT Define uncached datal 38

IA.1.12 If no data is changed, no callback will be executed| 40

IA.1.13 Callback execution in case of a full update|. 40

JA.1.14 Callback execution in case of get function| 41

[B Test-Coverage] 42
B. caching | e e 42
IB.1.1 caching.__init__.py | e 42

2/ P71

Unittest for caching

1 Test Information

1.1 Test Candidate Information

The Module caching is designed to store information in json or pickle files to support them much faster then

generating them from the original source file. For more Information read the documentation.

Library Information

Name caching

State Released

Supported Interpreters python3

Version 577b0566ea65d16ab78f897274c3f04f

Dependencies

1.2 Unittest Information

Unittest Information

Version 0d25a9eaf8f326b4757227f4aa618b05
Testruns with python 3.11.2 (final)

1.3 Test System Information

System Information

Architecture 64bit

Distribution Debian GNU/Linux 12 bookworm

Hostname ahorn

Kernel 6.1.0-17-amd64 (#1 SMP PREEMPT_DYNAMIC Debian 6.1.69-1 (2023-12-30))
Machine x86_64

Path /home/dirk/my_repositories/unittest/caching

System Linux

Username dirk

2 Statistic

2.1
Number of tests 14
Number of successfull tests 14

Number of possibly failed tests 0

Number of failed tests 0
Executionlevel Full Test (all defined tests)
Time consumption 8.068s

3/

Unittest for caching

2.2 Coverage Statistic

Module- or Filename Line-Coverage Branch-Coverage

caching 98.6% 100.0%
caching.__init__.py 98.6%

4/

Unittest for caching

3 Tested Requirements

3.1 Cache generation (json /pickle)

3.1.1 Data generation from source instance, if no cache is available

Description

If the cache is not available, the data shall be generated from the source instance.

Reason for the implementation

There shall be the posibility to create the cache on demand, so the fallback is to generate the data from the source

instance.

Fitcriterion

Caching is called without previous cache generation and the data from the source instance is completely available.

Testresult
This test was passed with the state: . See also full trace in section [A.1.T]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:23,269
Finished-Time: 2024-09-29 22:12:23,271
Time-Consumption 0.002s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '__string__' and Type is <class
'str'>).

Data from cached instance with key=unicode is correct (Content '__unicode_' and Type is
<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float">).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
'list'>).

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4":
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

Data from cached instance with key=unknown_key is correct (Content 5 and Type is <class
'int'>).

5/

Unittest for caching

3.1.2 Create complete cache from the given data instance

Description
There shall be a method caching all information from the given instance.

Reason for the implementation
Independent usage of data generation and data usage (e.g. the user requesting the data is not able to create the data).

Fitcriterion

Caching is called twice with different data instances and the cached data from the first call is completely available.

Testresult
This test was passed with the state: . See also full trace in section [A.1.2]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:23,271
Finished-Time: 2024-09-29 22:12:23,273
Time-Consumption 0.002s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_pickle’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str’>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1': 1, '2': "two’, '3": '3’, "4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

Data from cached instance with key=unknown_key is correct (Content 5 and Type is <class
"int'>).

3.1.3 Create cache partially from a given data instance by get method

Description
On getting data from the cached instance, the information shall be stored in the cache file.

Reason for the implementation
There shall be the posibility to create the cache on demand, so the fallback is to generate the data from the source
instance.

6/

Unittest for caching

Fitcriterion
Caching is called twice with different data instances and the cached data from the first call is available for all keys cached
on the first run.

Testresult
This test was passed with the state: . See also full trace in section [A.1.3]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:23,273
Finished-Time: 2024-09-29 22:12:23,278
Time-Consumption 0.005s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str’>).
Data from cached instance with key=unicode is correct (Content '__unicode_' and Type is
<class 'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, "two’, '3", 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": 1, '2": 'two’, '3": '3", '4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

Data from cached instance with key=unknown_key is correct (Content 5 and Type is <class
'int'>).

3.2 Load spreading for full update
3.2.1 Full update with delay between each data generation for the cache

Description
The full update method shall pause for a given time between every cached item.

Reason for the implementation
Load spreading in case of cyclic called .full_update().

Fitcriterion
The time consumption of the method .full update(<sleep_time>) shall consume n times the given sleep_time.

Where n is the number of items which will be cahed from the source instance.

7/

Unittest for caching

Testresult
This test was passed with the state: Success. See also full trace in section [A.1.4]

8/ P

Unittest for caching

Testrun: python 3.11.2 (final)

Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:23,278

Finished-Time: 2024-09-29 22:12:29,285

Time-Consumption 6.006s

Testsummary:

Info Prepare: Cleanup before testcase execution

Consumed time for full_update is greater expectation (Content 6.004939794540405 and Type
is <class 'float’>).
Consumed time for full_update is greater expectation (Content 6.004939794540405 and Type
is <class 'float’>).

3.2.2 No cache generation if disabled

Description

The cache shall be generated by the .get () method, only if the cache instance parameter store_on_get is set to True.

Reason for the implementation

Independent usage of data generation and data usage (e.g. the user requesting the data is not able to create the data).

Fitcriterion

Create a caching instance with store_on_get set to False. Get every item of the source instance with the .get ()

method and check that no cache file exists.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.5]

Testrun: python 3.11.2 (final)

Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:29,285

Finished-Time: 2024-09-29 22:12:29,292

Time-Consumption 0.007s

Testsummary:

Info Prepare: Cleanup before testcase execution

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str’>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, "two’, '3", 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": 1, '2": '
4} and Type is <class 'dict'>).

Unittest for caching

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

The cache file (/home/dirk/my_repositories/unittest/caching/unittest/output_data/
cache_data_test_full_update_sleep.json) shall not exist is correct (Content False and Type
is <class 'bool’>).

3.3 Dump cache conditions
3.3.1 Dump cache if time is expired

Description

Dump the cached item, if this item is older then the given expirery time.

Reason for the implementation
Ensure, that the cache is updated from time to time. For example for items which do not change very often.

Fitcriterion
Create a cache instance, cache some data. Intialise a second caching instance with a different source instance and a
expire time. Wait for longer than the given expiry time and check that the items from the second source instance are

returned.
Testresult
This test was passed with the state: . See also full trace in section [A.1.6]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:29,293
Finished-Time: 2024-09-29 22:12:31,306
Time-Consumption 2.013s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3, 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1': 1, '2": 'two’, '3": '3’, "4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

Data from cached instance with key=str is correct (Content '_string__' and Type is <class
'str'>).

10/

Unittest for caching

Data from cached instance with key=unicode is correct (Content '__unicode__
<class 'str'>).
Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

and Type is

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float>).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1': '1", '2": 2, '3": 'three’, '4"
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

3.3.2 Dump cache if data version increases

Description

Dump the complete cache, if the data version of the source instance is increased.

Reason for the implementation
The data version is part of the source instance. Increasing the data version indicates, that the source instance generates
the data in another way or the structure of the data is changed. In that condition, the cache needs to be ignored.

Fitcriterion

Create a cached instance and cache some items. Generate a second cached instance with different source data and a
increased data version. Ensure, that the cache instance returns the values from the second source. It is required to set
load_all on_init to False and store_on_get to True.

Testresult
This test was passed with the state: . See also full trace in section [A.1.7]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:31,306
Finished-Time: 2024-09-29 22:12:31,312
Time-Consumption 0.006s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '__string__' and Type is <class
'str'>).

Data from cached instance with key=unicode is correct (Content '__unicode_' and Type is
<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int’>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
list'>).

11/

Unittest for caching

Data from cached instance with key=dict is correct (Content {'1': '1’, '2": 2, '3": 'three’, '4"
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

3.3.3 Dump cache if data uid is changed

Description
Dump the complete cache, if the data uid of the source instance is changed.

Reason for the implementation
The data uid is part of the source instance. Changing the data uid indicates, that the source of the data created by the
source instance is changed (e.g. the uid of a file or folder) and the cache needs to be ignored.

Fitcriterion

Create a cached instance and cache some items. Generate a second cached instance with different source data and
a changed data uid. Ensure, that the cache instance returns the values from the second source. It is required to set
load_all on_init to False and store_on_get to True.

Testresult
This test was passed with the state: . See also full trace in section [A.1.8]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:31,312
Finished-Time: 2024-09-29 22:12:31,321
Time-Consumption 0.008s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '__string__' and Type is <class
'str'>).

Data from cached instance with key=unicode is correct (Content '__unicode__
<class 'str'>).

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

’

and Type is

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
'list'>).

Data from cached instance with key=dict is correct (Content {'1": "1, '2": 2, '3": 'three’, '4":
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

12/

Unittest for caching

3.3.4 Dump cache if storage version is changed

Description
Dump the complete cache, if the storage version of the caching class is changed.

Reason for the implementation
The storage version is part of the caching class. Changing the storage version indicates, that the previously stored cache
is not compatible due to new data storage and the cache needs to be ignored.

Fitcriterion
Create a cached instance and cache some items. Generate a second cached instance with different source data and a
changed storage version. Ensure, that the cache instance returns the values from the second source. It is required to

set load-all_ on_init to False and store_on_get to True.

Testresult
This test was passed with the state: . See also full trace in section [A.1.9]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:31,321
Finished-Time: 2024-09-29 22:12:31,328
Time-Consumption 0.007s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '__string__' and Type is <class
'str'>).
Data from cached instance with key=unicode is correct (Content '__unicode__

<class 'str'>).
Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

’

and Type is

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float>).

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class
'list'>).

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4":
'4'} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

3.3.5 Dump cache if stored value is 'None’

Description

Dump the cached item, if the stored value is None.

13/

Unittest for caching

Reason for the implementation
If no information is stored in the cache, the data shall be generated by the source instance.

Fitcriterion
Create a cached instance and cache some items. One needs to have None as value. Generate a second cached instance
with different source data (especially, the previous item with value None needs to have a not None value. Ensure, that

the caching instance returns not None from the second source.

Testresult
This test was passed with the state: . See also full trace in section [A.1.10]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:31,328
Finished-Time: 2024-09-29 22:12:31,332
Time-Consumption 0.003s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str’>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).
Data from cached instance with key=float is correct (Content 3.14159 and Type is <class
'float’>).

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1': 1, '2': "two’, '3": '3’, "4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content 'not None' and Type is <class
'str'>).

3.4 Definition of uncached data
3.4.1 Define uncached data

Description

It shall be possible to define items which are not cached.

Reason for the implementation
If there is dynamic changed data in the source instance, it shall be possible to define these items as non cached to get
them always from the source instance.

Fitcriterion
Create a cached instance and cache some items. Generate a second cached instance with different source data and set

14/

Unittest for caching

at least one item as source item. This item should be previously cached. Ensure, that the source item isis the one from
the second source instance.

Testresult
This test was passed with the state: . See also full trace in section [A.1.11]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:31,332
Finished-Time: 2024-09-29 22:12:31,335
Time-Consumption 0.004s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached
Data from cached instance with key=str is correct (Content '_string__' and Type is <class
'str'>).
Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class
'str'>).

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).
Data from cached instance with key=float is correct (Content 2.71828 and Type is <class
'float>).

Data from cached instance with key=list is correct (Content [1, "two’, '3", 4] and Type is <class
list'>).

Data from cached instance with key=dict is correct (Content {'1": 1, '2": 'two’, '3": '3, '4"
4} and Type is <class 'dict'>).

Data from cached instance with key=none is correct (Content None and Type is <class
'NoneType'>).

3.5 Callback on data storage
3.5.1 If no data is changed, no callback will be executed

Description
The store callback shall not be executed, if no cache is stored.

Reason for the implementation
Do actions, if cache data is stored to disk.

Fitcriterion
Initialise the cache instance without storing cache data. Ensure, that the callback is never executed.

Testresult
This test was passed with the state: . See also full trace in section [A.1.12]
Testrun: python 3.11.2 (final)

15/

Unittest for caching

Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:31,336

Finished-Time: 2024-09-29 22:12:31,336

Time-Consumption 0.001s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Installing save_callback with no get or full_update execution.

Save callback execution counter is correct (Content 0 and Type is <class 'int">).
Save callback execution counter is correct (Content None and Type is <class 'NoneType'>).

3.5.2 Callback execution in case of a full update

Description

The storage callback shall be called once on every full update().

Reason for the implementation

Do actions, if cache data is stored to disk.

Fitcriterion

Initialise the cache instance and ensure, that the callback is executed as often as the .full_update() method is

executed.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.13]

Testrun: python 3.11.2 (final)

Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:31,336

Finished-Time: 2024-09-29 22:12:31,338

Time-Consumption 0.001s

Testsummary:

Info Prepare: Cleanup before testcase execution

Info Installing save_callback and execute full_update.

Save callback execution counter is correct (Content 1 and Type is <class 'int’>).
Save callback execution counter is correct (Content <caching.property_cache_json object at
0x7f75aba31890> and Type is <class 'caching.property_cache_json'>).

3.5.3 Callback execution in case of get function

Description

The storage callback, shall be called once on every .get (), if storage_on_get is set to True.

16/

Unittest for caching

Reason for the implementation
Do actions, if cache data is stored to disk.

Fitcriterion
Initialise the cache instance and ensure, that the callback is executed as often as the .get () method is executed.

Testresult
This test was passed with the state: . See also full trace in section [A.1.14]
Testrun: python 3.11.2 (final)
Caller: /home/dirk/my_repositories/unittest/caching/unittest/src/report/__init__.py (323)
Start-Time: 2024-09-29 22:12:31,338
Finished-Time: 2024-09-29 22:12:31,339
Time-Consumption 0.001s
Testsummary:
Info Prepare: Cleanup before testcase execution
Info Installing save_callback and execute a single get.
Info Installing save_callback and execute a single get.

Save callback execution counter is correct (Content 2 and Type is <class 'int">).
Save callback execution counter is correct (Content <caching.property_cache_json object at
0x7f75aba32990> and Type is <class 'caching.property_cache_json'>).

17/

Unittest for caching

A Trace for testrun with python 3.11.2 (final)

A.1 Tests with status Info (14)

A.1.1 Data generation from source instance, if no cache is available

Description

If the cache is not available, the data shall be generated from the source instance.

Reason for the implementation
There shall be the posibility to create the cache on demand, so the fallback is to generate the data from the source

instance.

Fitcriterion
Caching is called without previous cache generation and the data from the source instance is completely available.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Cache file does not exists (yet).

Loading property for key='str' from source instance

Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string_ _' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

Loading property for key='unicode' from source instance

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class
- 'str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance

Result (Data from cached instance with key=integer): 34 (<class 'int'>)

18/

Unittest for caching

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’>).

Loading property for key='float' from source instance
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)
Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance
Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
< 'list'>)

Data from cached instance with key=dict is correct (Content {'1': '1', '2": 2, '3": 'three’, '4": "4’} and
Type is <class 'dict’>).

Loading property for key='dict' from source instance

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4'
< } (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

< 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Loading property for key='none' from source instance
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

Data from cached instance with key=unknown _key is correct (Content 5 and Type is <class 'int">).

Key 'unknown_key' is not in cached_keys. Uncached data will be returned.
Result (Data from cached instance with key=unknown_key): 5 (<class 'int'>)

Expectation (Data from cached instance with key=unknown_key): result = 5 (<class 'int'>)
A.1.2 Create complete cache from the given data instance

Description
There shall be a method caching all information from the given instance.

Reason for the implementation
Independent usage of data generation and data usage (e.g. the user requesting the data is not able to create the data).

Fitcriterion
Caching is called twice with different data instances and the cached data from the first call is completely available.

19]

Unittest for caching

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_pickle’ with a class holding the data to be cached

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_load_on_init.pkl)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/my_repositories/unittest/caching/unittest/output_da

— ta/cache_data_test_load_on_init.pkl)
Providing property for 'str' from cache
Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float'>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
- 'list'>)

20/ 47

Unittest for caching

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3", '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
- '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'none' from cache
Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

Data from cached instance with key=unknown _key is correct (Content 5 and Type is <class 'int">).

Key 'unknown_key' is not in cached_keys. Uncached data will be returned.
Result (Data from cached instance with key=unknown_key): 5 (<class 'int'>)

Expectation (Data from cached instance with key=unknown_key): result = 5 (<class 'int'>)

A.1.3 Create cache partially from a given data instance by get method

Description
On getting data from the cached instance, the information shall be stored in the cache file.

Reason for the implementation
There shall be the posibility to create the cache on demand, so the fallback is to generate the data from the source

instance.

Fitcriterion
Caching is called twice with different data instances and the cached data from the first call is available for all keys cached
on the first run.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Cache file does not exist on filesystem.

Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Cache file does not exists (yet).

21/

Loading property for key='str' from source instance
Adding key=str, value=string with timestamp=1727640743 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_load_on_init.json)
Loading property for key='integer' from source instance
Adding key=integer, value=17 with timestamp=1727640743 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Loading property for key='list' from source instance
Adding key=list, value=[1, 'two', '3', 4] with timestamp=1727640743 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

< a_test_load_on_init.json)

Loading property for key='dict' from source instance

Adding key=dict, value={'1': 1, '2': 'two', '3': '3', '4': 4} with timestamp=1727640743 to
— chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_load_on_init.json)
Loading property for key='none' from source instance
Adding key=none, value=None with timestamp=1727640743 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/my_repositories/unittest/caching/unittest/output_da
— ta/cache_data_test_load_on_init.json)

Providing property for 'str' from cache
Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1727640743 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_load_on_init.json)

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode_

— 'Str‘>)

(<class

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache

Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Unittest for caching

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float’'>).

Loading property for key='float' from source instance

Adding key=float, value=2.71828 with timestamp=1727640743 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_load_on_init.json)

Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list'>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
— 'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class "dict’>).

Providing property for 'dict' from cache
Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
« (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
< '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'none' from cache
Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

Data from cached instance with key=unknown _key is correct (Content 5 and Type is <class 'int">).

Key 'unknown_key' is not in cached_keys. Uncached data will be returned.
Result (Data from cached instance with key=unknown_key): 5 (<class 'int'>)

Expectation (Data from cached instance with key=unknown_key): result = 5 (<class 'int'>)
A.1.4 Full update with delay between each data generation for the cache

Description

The full update method shall pause for a given time between every cached item.

Reason for the implementation
Load spreading in case of cyclic called .full _update().

23 / 47

Unittest for caching

Fitcriterion
The time consumption of the method .full_update(<sleep_time>) shall consume n times the given sleep_time.
Where n is the number of items which will be cahed from the source instance.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Cache file does not exist on filesystem.

Consumed time for full_update is greater expectation (Content 6.004939794540405 and Type is <class
'float’>).

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_full_update_sleep.json)

Result (Consumed time for full_update): 6.004939794540405 (<class 'float'>)

Expectation (Consumed time for full_update): result > 6.0 (<class 'float'>)

Consumed time for full_update is greater expectation (Content 6.004939794540405 and Type is <class
'float'>).

Result (Consumed time for full_update): 6.004939794540405 (<class 'float'>)

Expectation (Consumed time for full_update): result < 6.5 (<class 'float'>)
A.1.5 No cache generation if disabled

Description

The cache shall be generated by the .get () method, only if the cache instance parameter store_on_get is set to True.

Reason for the implementation
Independent usage of data generation and data usage (e.g. the user requesting the data is not able to create the data).

Fitcriterion
Create a caching instance with store_on_get set to False. Get every item of the source instance with the .get ()
method and check that no cache file exists.

24 /

Unittest for caching

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
Providing property for 'str' from cache

Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float'>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
— '1iSt'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class "dict’>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

25 / 47

Unittest for caching

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
- '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'none' from cache
Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

The cache file (/home/dirk/my_repositories/unittest/caching/unittest/output_data/
cache_data_test_full_update_sleep.json) shall not exist is correct (Content False and Type is <class
"bool’>).

Result (The cache file (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cach
— e_data_test_full_update_sleep.json) shall not exist): False (<class

— 'bool'>)

Expectation (The cache file (/home/dirk/my_repositories/unittest/caching/unittest/output_data
— /cache_data_test_full_update_sleep.json) shall not exist): result = False (<class

< 'bool'>)

A.1.6 Dump cache if time is expired

Description
Dump the cached item, if this item is older then the given expirery time.

Reason for the implementation

Ensure, that the cache is updated from time to time. For example for items which do not change very often.

Fitcriterion

Create a cache instance, cache some data. Intialise a second caching instance with a different source instance and a
expire time. Wait for longer than the given expiry time and check that the items from the second source instance are
returned.

Testresult

This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

26/

Unittest for caching

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/my_repositories/unittest/caching/unittest/output_da
— ta/cache_data_test_dump_cache. json)

Providing property for 'str' from cache

Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float’>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)
Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
< ‘'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
— '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'none' from cache

27

Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

The cached value is old, cached value will be ignored
Loading property for key='str' from source instance
Adding key=str, value=__string__ with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

The cached value is old, cached value will be ignored
Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode_

with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=unicode): __unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class
- 'str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

The cached value is old, cached value will be ignored
Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float'>).

The cached value is old, cached value will be ignored
Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Unittest for caching

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

The cached value is old, cached value will be ignored
Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class

< 'list'>)

Data from cached instance with key=dict is correct (Content {'1": '1', '2": 2, '3": 'three’, '4": '4'} and
Type is <class 'dict’>).

The cached value is old, cached value will be ignored

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1727640751
— to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4'
< } (Kclass 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

— 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

The cached value is old, cached value will be ignored
Loading property for key='none' from source instance
Adding key=none, value=not None with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)
A.1.7 Dump cache if data version increases

Description
Dump the complete cache, if the data version of the source instance is increased.

Reason for the implementation
The data version is part of the source instance. Increasing the data version indicates, that the source instance generates
the data in another way or the structure of the data is changed. In that condition, the cache needs to be ignored.

29/ |47

Unittest for caching

Fitcriterion
Create a cached instance and cache some items. Generate a second cached instance with different source data and a
increased data version. Ensure, that the cache instance returns the values from the second source. It is required to set

load_all on_init to False and store_on_get to True.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Loading properties from cache (/home/dirk/my_repositories/unittest/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)

Data version increased, ignoring previous cache data

Loading property for key='str' from source instance

Adding key=str, value=__string__ with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class

< 'str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance

Adding key=integer, value=34 with timestamp=1727640751 to chache

30/ 47

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float'>).

Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
— '1iSt'>)

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4": "4’} and
Type is <class "dict’>).

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1727640751

— to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4'
— } (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

< 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Loading property for key='none' from source instance
Adding key=none, value=not None with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

Unittest for caching

A.1.8 Dump cache if data uid is changed

Description
Dump the complete cache, if the data uid of the source instance is changed.

Reason for the implementation
The data uid is part of the source instance. Changing the data uid indicates, that the source of the data created by the
source instance is changed (e.g. the uid of a file or folder) and the cache needs to be ignored.

Fitcriterion
Create a cached instance and cache some items. Generate a second cached instance with different source data and
a changed data uid. Ensure, that the cache instance returns the values from the second source. It is required to set

load_all on_init to False and store_on_get to True.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Loading properties from cache (/home/dirk/my_repositories/unittest/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)

Source uid changed, ignoring previous cache data

Loading property for key='str' from source instance

Adding key=str, value=__string__ with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)
Result (Data from cached instance with key=str): '__string__' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str’>).

Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1727640751 to chache

32/

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class

— 'str‘>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float'>).

Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
— 'list'>)

Data from cached instance with key=dict is correct (Content {'1": '1’, '2": 2, '3": 'three’, '4": '4'} and
Type is <class 'dict'>).

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1727640751

— to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4'
< (Kclass 'dict'>)

Unittest for caching

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':
< 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Loading property for key='none' from source instance

Adding key=none, value=not None with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)
A.1.9 Dump cache if storage version is changed

Description

Dump the complete cache, if the storage version of the caching class is changed.

Reason for the implementation
The storage version is part of the caching class. Changing the storage version indicates, that the previously stored cache

is not compatible due to new data storage and the cache needs to be ignored.

Fitcriterion
Create a cached instance and cache some items. Generate a second cached instance with different source data and a
changed storage version. Ensure, that the cache instance returns the values from the second source. It is required to

set load_all on_init to False and store_on_get to True.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json’ with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'mnone']
cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Loading properties from cache (/home/dirk/my_repositories/unittest/caching/unittest/output_da

— ta/cache_data_test_dump_cache. json)

Storage version changed, ignoring previous cache data

34/

Loading property for key='str' from source instance
Adding key=str, value=__string__ with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

< a_test_dump_cache. json)

Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content '__unicode__" and Type is <class 'str'>).

Loading property for key='unicode' from source instance

Adding key=unicode, value=__unicode__ with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Result (Data from cached instance with key=unicode): '__unicode__' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = '__unicode__' (<class

< 'str'>)

Data from cached instance with key=integer is correct (Content 34 and Type is <class 'int'>).

Loading property for key='integer' from source instance
Adding key=integer, value=34 with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=integer): 34 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 34 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float'>).

Loading property for key='float' from source instance
Adding key=float, value=2.71828 with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content ['one’, 2, 3, '4'] and Type is <class 'list’>).

Loading property for key='list' from source instance
Adding key=list, value=['one', 2, 3, '4'] with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=list): ['one', 2, 3, '4'] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = ['one', 2, 3, '4'] (<class
< 'list'>)

1

Unittest for caching

Data from cached instance with key=dict is correct (Content {'1": '1', '2": 2, '3": 'three’, '4": '4'} and
Type is <class 'dict'>).

Loading property for key='dict' from source instance

Adding key=dict, value={'1': '1', '2': 2, '3': 'three', '4': '4'} with timestamp=1727640751

— to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat
— a_test_dump_cache. json)

Result (Data from cached instance with key=dict): { '1': '1', '2': 2, '3': 'three', '4': '4'
— } (Kclass 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': '1', '2': 2, '3':

— 'three', '4': '4' } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Loading property for key='none' from source instance
Adding key=none, value=not None with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

A.1.10 Dump cache if stored value is 'None’

Description
Dump the cached item, if the stored value is None.

Reason for the implementation
If no information is stored in the cache, the data shall be generated by the source instance.

Fitcriterion
Create a cached instance and cache some items. One needs to have None as value. Generate a second cached instance
with different source data (especially, the previous item with value None needs to have a not None value. Ensure, that

the caching instance returns not None from the second source.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

36/

Unittest for caching

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_dump_cache. json)

Data from cached instance with key=str is correct (Content 'string’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/my_repositories/unittest/caching/unittest/output_da
— ta/cache_data_test_dump_cache. json)

Providing property for 'str' from cache
Result (Data from cached instance with key=str): 'string' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = 'string' (<class 'str'>)

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 3.14159 and Type is <class 'float'>).

Providing property for 'float' from cache
Result (Data from cached instance with key=float): 3.14159 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 3.14159 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class

< 'list'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache

37

Unittest for caching

Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
< (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
< '3'", '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content 'not None' and Type is <class 'str'>).

Providing property for 'none' from cache
Result (Data from cached instance with key=none): 'not None' (<class 'str'>)

Expectation (Data from cached instance with key=none): result = 'not None' (<class 'str'>)

A.1.11 Define uncached data

Description
It shall be possible to define items which are not cached.

Reason for the implementation
If there is dynamic changed data in the source instance, it shall be possible to define these items as non cached to get

them always from the source instance.

Fitcriterion
Create a cached instance and cache some items. Generate a second cached instance with different source data and set
at least one item as source item. This item should be previously cached. Ensure, that the source item isis the one from

the second source instance.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Prepare: First usage of 'property_cache_json' with a class holding the data to be cached

Cache file does not exists (yet).

Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']
cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/cache_dat

— a_test_source_key_def.json)

Data from cached instance with key=str is correct (Content '__string__" and Type is <class 'str'>).

Key 'str' is excluded by .add_source_get_keys(). Uncached data will be returned.
Result (Data from cached instance with key=str): '__string _' (<class 'str'>)

Expectation (Data from cached instance with key=str): result = '__string__' (<class 'str'>)

38/

Unittest for caching

Data from cached instance with key=unicode is correct (Content 'unicode’ and Type is <class 'str'>).

Loading properties from cache (/home/dirk/my_repositories/unittest/caching/unittest/output_da

— ta/cache_data_test_source_key_def. json)
Providing property for 'unicode' from cache
Result (Data from cached instance with key=unicode): 'unicode' (<class 'str'>)

Expectation (Data from cached instance with key=unicode): result = 'unicode' (<class 'str'>)

Data from cached instance with key=integer is correct (Content 17 and Type is <class 'int'>).

Providing property for 'integer' from cache
Result (Data from cached instance with key=integer): 17 (<class 'int'>)

Expectation (Data from cached instance with key=integer): result = 17 (<class 'int'>)

Data from cached instance with key=float is correct (Content 2.71828 and Type is <class 'float'>).

Key 'float' is excluded by .add_source_get_keys(). Uncached data will be returned.
Result (Data from cached instance with key=float): 2.71828 (<class 'float'>)

Expectation (Data from cached instance with key=float): result = 2.71828 (<class 'float'>)

Data from cached instance with key=list is correct (Content [1, 'two’, '3", 4] and Type is <class 'list’>).

Providing property for 'list' from cache
Result (Data from cached instance with key=list): [1, 'two', '3', 4] (<class 'list'>)

Expectation (Data from cached instance with key=list): result = [1, 'two', '3', 4] (<class
— '1iSt'>)

Data from cached instance with key=dict is correct (Content {'1": 1, '2": "two’, '3": '3’, '4": 4} and Type
is <class 'dict’>).

Providing property for 'dict' from cache
Result (Data from cached instance with key=dict): { '1': 1, '2': 'two', '3': '3', '4': 4 }
— (<class 'dict'>)

Expectation (Data from cached instance with key=dict): result = { '1': 1, '2': 'two', '3':
- '3', '4': 4 } (<class 'dict'>)

Data from cached instance with key=none is correct (Content None and Type is <class 'NoneType'>).

Providing property for 'none' from cache
Result (Data from cached instance with key=none): None (<class 'NoneType'>)

Expectation (Data from cached instance with key=none): result = None (<class 'NoneType'>)

39/ 47

Unittest for caching

A.1.12 If no data is changed, no callback will be executed

Description
The store callback shall not be executed, if no cache is stored.

Reason for the implementation
Do actions, if cache data is stored to disk.

Fitcriterion

Initialise the cache instance without storing cache data. Ensure, that the callback is never executed.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

Info Installing save_callback with no get or full_update execution.

Save callback execution counter is correct (Content 0 and Type is <class 'int'>).

Result (Save callback execution counter): 0 (<class 'int'>)

Expectation (Save callback execution counter): result = 0 (<class 'int'>)

Save callback execution counter is correct (Content None and Type is <class 'NoneType'>).

Result (Save callback execution counter): None (<class 'NoneType'>)

Expectation (Save callback execution counter): result = None (<class 'NoneType'>)
A.1.13 Callback execution in case of a full update

Description
The storage callback shall be called once on every full_update().

Reason for the implementation
Do actions, if cache data is stored to disk.

Fitcriterion

Initialise the cache instance and ensure, that the callback is executed as often as the .full_update() method is
executed.

40/

Unittest for caching

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Cache file does not exist on filesystem.

Info Installing save_callback and execute full_update.

Cache file does not exists (yet).
Loading all data from source - ['str', 'unicode', 'integer', 'float', 'list', 'dict', 'none']

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/save_call
— back_callback. json)

Save callback execution counter is correct (Content 1 and Type is <class 'int'>).

Result (Save callback execution counter): 1 (<class 'int'>)

Expectation (Save callback execution counter): result = 1 (<class 'int'>)

Save callback execution counter is correct (Content <caching.property_cache_json object at
0x7f75aba31890> and Type is <class 'caching.property_cache_json'>).

Result (Save callback execution counter): <caching.property_cache_json object at

— 0x7f75aba31890> (<class 'caching.property_cache_json'>)

Expectation (Save callback execution counter): result = <caching.property_cache_json object
— at 0x7f75aba31890> (<class 'caching.property_cache_json'>)

A.1.14 Callback execution in case of get function

Description
The storage callback, shall be called once on every .get (), if storage_on_get is set to True.

Reason for the implementation
Do actions, if cache data is stored to disk.

Fitcriterion
Initialise the cache instance and ensure, that the callback is executed as often as the .get () method is executed.

Testresult
This test was passed with the state:

Info Prepare: Cleanup before testcase execution

Deleting cache file from filesystem to ensure identical conditions for each test run.

41/

Unittest for caching

Info Installing save_callback and execute a single get.

Cache file does not exists (yet).
Loading property for key='str' from source instance
Adding key=str, value=string with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/save_call

— back_callback. json)

Info Installing save_callback and execute a single get.

Loading property for key='unicode' from source instance
Adding key=unicode, value=unicode with timestamp=1727640751 to chache

cache-file stored (/home/dirk/my_repositories/unittest/caching/unittest/output_data/save_call

— back_callback. json)

Save callback execution counter is correct (Content 2 and Type is <class 'int'>).

Result (Save callback execution counter): 2 (<class 'int'>)

Expectation (Save callback execution counter): result = 2 (<class 'int'>)

Save callback execution counter is correct (Content <caching.property_cache json object at
0x7f75aba32990> and Type is <class 'caching.property_cache_json'>).

Result (Save callback execution counter): <caching.property_cache_json object at

— 0x7£75aba32990> (<class 'caching.property_cache_json'>)

Expectation (Save callback execution counter): result = <caching.property_cache_json object

— at 0x7f75aba32990> (<class 'caching.property_cache_json'>)
B Test-Coverage

B.1 caching

The line coverage for caching was 98.6%
The branch coverage for caching was 100.0%

B.1.1 caching.__init__.py

The line coverage for caching.__init__.py was 98.6%

The branch coverage for caching.__init__.py was 100.0%

42/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Unittest for caching

#!/usr/bin/env python
—*— coding: utf—8 —x—
#

o

caching (Caching Module)

*x Author %
x* Dirk Alders <sudo—dirk@mount—mockery.de>
#*x Description :#*x%
This Module supports functions and classes for caching e.g. properties of other instances.
**% Submodules :*x

x :class: caching.property_cache_json"
x :class: caching.property_cache_pickle"

*x Unittest ik

See also the :download: unittest <caching/_testresults_/unittest.pdf>" documentation.

__DEPENDENCIES__ = []

import json
import logging
import os
import pickle
import time

try:
from config import APP.NAME as ROOT_LOGGER_.NAME
except ImportError:
ROOT_LOGGER.NAME = 'root'
logger = logging.getLogger (ROOT_.LOGGER.NAME) . getChild (-_name__)

__DESCRIPTION__ = """ The Module {\\tt %s} is designed to store information in {\\tt json} or {\\
tt pickle} files to support them much faster then generating them from the original source
file .

For more Information read the documentation.””” % __name__.replace('_", '"_")

""" The Module Description”""

__INTERPRETER_. = (3,)

""" The Tested Interpreter—Versions”""

class property_cache_pickle(object):

This class caches the data from a given “source_instance ~. It takes the data from the cache

instead of generating the data from the “source_instance ',
if the conditions for the cache usage are given.

admonition:: Required properties for the “source_instance’

% *%uid():x* returns the unique id of the source's source or None, if you don't
want to use the unique id.

* xxkeys():*% returns a list of all available keys.

% sxdata_version():x% returns a version number of the current data (it should be
increased , if the get method of the source instance returns improved values or the data
structure had been changed).

43 / [47]

56

57

58

59

60

61

62

64

65

66

67

68

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

98

99

100

101

102

103

104

105

106

107

Unittest for caching

* *xxget(key, default):*x returns the property for a key. If key does not exists,
default will be returned.

:param source_instance: The source instance holding the data

:type source_instance: instance

:param cache_filename: File name, where the properties are stored as cache

:type cache_filename: str

:param load_all_on_init: True will load all data from the source instance, when the cache
will be initialised the first time.

:type load_all_on_init: bool

:param callback_on_data_storage: The callback will be executed every time when the cache file
is stored. It will be executed with the instance of this class as first argument.

:type callback_on_data_storage: method

:param max_age: The maximum age of the cached data in seconds or None for no maximum age.
:type max_age: int or None

:param store_on_get: False will prevent cache storage with execution of the ".get(key,
default)® method. You need to store the cache somewhere else.

:type store_on_get: bool
admonition:: The cache will be used, if all following conditions are given

% The key is in the list returned by ".keys() method of the “source_instance"
% The key is not in the list of keys added by the ‘.add_source_get_keys ()" method

% The cache age is less then the given max_age parameter or the given max_age is
None.

% The uid of the source instance (e.g. a checksum or unique id of the source) is
identically to to uid stored in the cache.

% The data version of the “source_instance’™ is <= the data version stored in the
cache.

% The value is available in the previous stored information

x Example : %

literalinclude :: caching/_examples_/property_cache_pickle.py
Will result on the first execution to the following output (with a long execution time):
literalinclude :: caching/_examples_/property_cache_pickle_1.log

With every following execution the time cosumption my by much smaller:

literalinclude :: caching/_examples_/property_cache_pickle_2.log
DATA_VERSION_TAG = ' _property_cache_data_version_"'
STORAGE_VERSION_TAG = ' _storage_version_'
UID_-TAG = ' _property_cache_uid_"
DATA_TAG = '_data_'
AGE_TAG = '_age_'
#
STORAGE_VERSION = 1
def __init__(self, source_instance, cache_filename, load_all_on_init=False,
callback_on_data_storage=None, max_age=None, store_on_get=True, return_source_on_none=False):
self . _source_instance = source_instance
self. _cache_filename = cache_filename
self. _load_all_on_init = load_all_on_init
self. _callback_on_data_storage = callback_on_data_storage
self._max_age = max_age
self. _store_on_get = store_on_get
self. _return_source_on_none = return_source_on_none

44/

Unittest for caching

108 #

109 self._source_get_keys = []

110 self. _cached_props = None

111

112 def add_source_get_keys(self, keys):

113 e

114 This will add one or more keys to a list of keys which will always be provided by the

source_instance’ instead of the cache.

115

116 :param keys: The key or keys to be added

117 :type keys: list , tuple, str

118 o

119 if type(keys) in [list, tuple]:

120 self. _source_get_keys.extend (keys)

121 else:

122 self._source_get_keys.append(keys)

123

124 def full_update(self, sleep_between_keys=0):

125 n

126 With the execution of this method, the complete source data which needs to be cached,
will be read from the source instance

127 and the resulting cache will be stored to the given file.

128

129 :param sleep_between_keys: Time to sleep between each source data generation

130 :type sleep_between_keys: float, int

131

132 .. hint:: Use this method, if you initiallised the class with “store_on_get=False’

133 e

134 self. _load_source(sleep_between_keys=sleep_between_keys)

135 self._save_cache ()

136

137 def get(self, key, default=None):

138 n

139 Method to get the cached property. If the key does not exists in the cache or
source_instance *, “default® will be returned.

140

141 :param key: key for value to get.

142 :param default: value to be returned, if key does not exists.

143 :returns: value for a given key or default value.

144 e

145 if key in self. _source_instance.keys() and key not in self._source_get_keys:

146 if self._cached_props is None:

147 self. _init_cache()

148 if self._max_age is None:

149 cache_old = False

150 else:

151 cache_old = time.time() — self._cached_props[self . AGE_TAG]. get(self._key_filter(
key), 0) > self._max_age

152 if cache_old:

153 logger.debug(” The cached value is old, cached value will be ignored"”)

154 if self. _key_filter(key) not in self._cached_props[self.DATA_TAG] or cache_old:

155 logger.debug (" Loading property for key='%s' from source instance”, key)

156 val = self._source_instance.get(key, None)

157 if self._store_on_get:

158 tm = int(time.time())

159 logger.debug(” Adding key=%s, value=%s with timestamp=%d to chache”, key, val,
tm)

160 self._cached_props[self .DATATAG][self. _key_filter(key)] = val

161 self._cached_props[self AGE_-TAG][self. _key_filter(key)] = tm

162 self._save_cache ()

163 else:

164 return val

45 / [47]

165

166

167

168

169

188

189

190

191

192

193

194

195

196

197

198

199

201

202

Unittest for caching

else:
logger.debug(” Providing property for '%s' from cache”, key)
cached_data = self._cached_props|[self DATATAG]. get(self. _key_filter(key), default)
if cached_data is None and self._return_source_on_none:
return self._source_instance.get(key, default)
return cached_data

else:
if key not in self._source_instance.keys():
logger.debug (" Key '%s' is not in cached_keys. Uncached data will be returned.”,
key)
else:
logger.debug("Key '%s' is excluded by .add_source_get_keys(). Uncached data will
be returned.”, key)

return self. _source_instance.get(key, default)

def _data_version(self):
if self._cached_props is None:
return None
else:
return self._cached_props.get(self.DATA_VERSION_.TAG, None)

def _storage_version(self):
if self._cached_props is None:
return None
else:
return self._cached_props.get(self.STORAGE_.VERSION_.TAG, None)

def _init_cache(self):

load_cache = self._load_cache()
uid = self._source_instance.uid() != self._uid ()
try:
data_version = self._source_instance.data_version() > self._data_version ()
except TypeError:
data_version = True
try:
storage_version = self._storage_version() != self.STORAGE_VERSION

except TypeError:
storage_version = True

#

if not load_cache or uid or data_version or storage_version:
if load_cache:
if self._uid() is not None and uid:

logger.debug(” Source uid changed, ignoring previous cache data”)
if self._data_version() is not None and data_version:
logger.debug(” Data version increased, ignoring previous cache data”)
if storage_version:
logger.debug(” Storage version changed, ignoring previous cache data")
self . _cached_props = {self .AGE_-TAG: {}, self .DATATAG: {}}
if self._load_all_on_init:

self._load_source ()
self._cached_props[self .UID.TAG] = self._source_instance.uid()
self._cached_props[self .DATA_VERSION_.TAG] = self._source_instance.data_version ()
self._cached_props[self.STORAGE_.VERSION_.TAG] = self.STORAGE_VERSION

def _load_only(self):
with open(self._cache_filename, 'rb') as fh:
self._cached_props = pickle.load(fh)
logger.debug('Loading properties from cache (%s)', self._cache_filename)
def _load_cache(self):
if os.path.exists(self._cache_filename):
self._load_only ()
return True

46 / [47]

259

def

def

get (

def

def

def

Unittest for caching

else:

logger.debug('Cache file does not exists (yet).')

return False

_key_filter(self, key):

return kev

_load_source(self, sleep_between_keys=0):
if self._cached_props is None:
self._init_cache ()
logger.debug('Loading all data from source — %s',
for key in self._source_instance.keys():
if key not in self. _source_get_keys:

repr(self._source_instance.keys()))

self._cached_props|[self .DATATAG][self. _key_filter(key)] = self._source_instance.

self._cached_props[self . AGE_-TAG][self. _key_filter(key)] = int(time.time())

key)
time.sleep(sleep_between_kevs)
_save_only(self):
with open(self._cache_filename, 'wb') as fh:
pickle .dump(self._cached_props, fh)
loeeer . debue('cache—file stored (%s)'. self._cache_filename)
_save_cache(self):

self. _save_only ()
if self._callback_on_data_storage is not None:
self. _callback_on_data_storage(self)

_uid (self):
if self._cached_props is None:

return None
else:

return self. _cached_props.ecet(self.UID_TAG. None)

class bropbertv_cache_ison(propertv_cache_pickle):

"o

See

also parent :py:class:’ property_cache_pickle ™ for

important ::

detailed information.

% This class uses json. You should %xonly*%x use keys of type string!

* Unicode types are transfered to strings

See limitations of json.

xx Example 1% %

Will

With every following

IRIED

def

def

iteralinclude :: caching/_examples_/property_cache_json.py

result on the first execution to the following output (with a long execution time):

iteralinclude :: caching/_examples_/property_cache_json_1.log

execution the time cosumption my by much smaller:

iteralinclude :: caching/_examples_/property_cache_json_2.log

_load_only (self):
with open(self._cache_filename, 'r') as fh:
self._cached_props = json.load(fh)

loeger .debue('Loadine broberties from cache (%s)'.

_save_only(self):
with open(self._cache_filename, 'w') as fh:

self. cache filename)

json.dump(self._cached_props, fh, sort_keys=True, indent=4)

logger.debug('cache—file stored (%s)', self._cache_filename)

47 / [47]

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 3.11.2 (final)
	Coverage Statistic

	Tested Requirements
	Cache generation (json /pickle)
	Data generation from source instance, if no cache is available
	Create complete cache from the given data instance
	Create cache partially from a given data instance by get method

	Load spreading for full update
	Full update with delay between each data generation for the cache
	No cache generation if disabled

	Dump cache conditions
	Dump cache if time is expired
	Dump cache if data version increases
	Dump cache if data uid is changed
	Dump cache if storage version is changed
	Dump cache if stored value is 'None'

	Definition of uncached data
	Define uncached data

	Callback on data storage
	If no data is changed, no callback will be executed
	Callback execution in case of a full update
	Callback execution in case of get function

	Trace for testrun with python 3.11.2 (final)
	Tests with status Info (14)
	Data generation from source instance, if no cache is available
	Create complete cache from the given data instance
	Create cache partially from a given data instance by get method
	Full update with delay between each data generation for the cache
	No cache generation if disabled
	Dump cache if time is expired
	Dump cache if data version increases
	Dump cache if data uid is changed
	Dump cache if storage version is changed
	Dump cache if stored value is 'None'
	Define uncached data
	If no data is changed, no callback will be executed
	Callback execution in case of a full update
	Callback execution in case of get function

	Test-Coverage
	 caching
	 caching.__init__.py

