Unittest for state_machine

June 16, 2020

Unittest for state_machine

Contents
(1 Test Information| 4
L1 Test Candidate Informationl 4
1.2 Unittest Informationl 4
1.3 Test System Information| 4
[2—Statistid 4
2.1 Test-Statistic for testrun with python 2.7.17 (final)l 4
.2 Test-Statistic for testrun with python 3.6.9 (final)] 5
2.3 Coverage Statistic] 5
[3 Tested Requirements| 6
3.1 Module Initialisationl 6
BI11 DefaultStatel 6
B.1.2 Default [ast Transition Condtion] 6
B.13 Default Previous Statel 7
[3.1.4 Additional Keyword Arguments|. L 8
3.2 Transition Changes| e 9
3.21 Transitiondefinition and -flow| 9
13.2.2 Transitiontiming] 11
13.2.3 Transitionpriorisation| L 12
B3 Module Interfacel. 13
B3I ThisState 13
332 ThisStateisl. 14
3.3.3 This State Durationl o 15
3.3.4 Last Transition Condition| 15
3.3.5 last Transition Condition was| 16
B3.6 Previous Statel 17
B37 PreviousStatewasl 18
338 Previous State Duration]. 19
3.4 Transition Callbacksl 20

Unittest for state_machine

I3.4.1 State change callback for a defined transition and targetstate]. 20
13.4.2 State change callback for a defined transition| 21
|3.4.3 State change callback for a defined targetstate] 22
I3.4.4 State change callback for all kind of state changes| 23
B.45 Execution order of Callbacks| 24
[A" Trace for testrun with python 2.7.17 (final)| 26
[A.1 Tests with status Info (20)] 26
ALl Default Statel 26
IA.12 Default last Transition Condtion| 26
IA.13 Default Previous Statel 27
|A.1.4 Additional Keyword Arguments| 27
[A15 Transitiondefinition and -flowl oo 28
JALL6 Transitiontiming e 29
JA.L.7 Transitionpriorisation| L 31
IALS8 This Statel o 32
[AT9 ThisStateisl. 32
IA.L10 This State Durationl oL 33
IA.111 Last Transition Condition| 33
[A112 Tast Transition Condition wasl 34
[AI13 Previous Statel 35
[A114 Previous Statewasl 35
[A1I5 Previous State Durationl. 36
|A.1.16 State change callback for a defined transition and targetstate]. 36
|A.1.17 State change callback for a defined transition| 38
|A.1.18 State change callback for a defined targetstate] 39
IA.1.19 State change callback for all kind of state changes| 41
[A1.20 Execution order of Callbacks| 0 42

2 /3

Unittest for state_machine

[B Trace for testrun with python 3.6.9 (final)| 43
[B.1 Tests with status Info (20)] 43
B.11 Default Statel 43
B.1.2 Default Last Transition Condtionl 44
IB.1.3 Default Previous Statel 44
IB.1.4 Additional Keyword Arguments| 45
B.15 Transitiondefinition and -flowlo oo 46
IB.1.6 Transitiontiming| e 47
IB.1.7 Transitionpriorisation| e 48
B.1.8 This Statel o 49
BI9 ThisStateisl. 50
B.1.10 This State Durationlo 50
[B.1.11 [ast Transition Condition| L 51
B.112 [ast Transition Condition wasl 51
B.113 Previous Statel 52
B.I114 Previous State wasl 53
B.1.15 Previous State Duration]. 53
IB.1.16 State change callback for a defined transition and targetstate]. 54
IB.1.17 State change callback for a defined transition| 55
IB.1.18 State change callback for a defined targetstate], 57
IB.1.19 State change callback for all kind of state changes| 59
B.1.20 Execution order of Callbacks| 60

[C Test-Coverage| 61
IC.1 statemachine | 61
IC.1.1 statemachine.__init__.py | 61

3/

Unittest for state_machine

1 Test Information

1.1 Test Candidate Information

This Module helps implementing state machines.

Library Information

Name
State

Supported Interpreters

Version

state_machine

Released

python2, python3
9884b22fc1e8af73e10e88e52951e585

Dependencies

1.2 Unittest Information

Unittest Information

Version
Testruns with

04693b5f87703f8bba98048b7730760f
python 2.7.17 (final), python 3.6.9 (final)

1.3 Test System Information

System Information

Architecture 64bit
Distribution LinuxMint 19.3 tricia
Hostname ahorn
Kernel 5.3.0-59-generic (#53 18.04.1-Ubuntu SMP Thu Jun 4 14:58:26 UTC 2020)
Machine x86_64
Path /user_data/data/dirk/prj/unittest/state_machine/unittest
System Linux
Username dirk
2 Statistic
2.1
Number of tests 20
Number of successfull tests 20

Number of possibly failed tests 0

Number of failed tests

0

Executionlevel

Time consumption

Full Test (all defined tests)
1.657s

4/

Unittest for state_machine

2.2
Number of tests 20
Number of successfull tests 20

Number of possibly failed tests 0

Number of failed tests 0
Executionlevel Full Test (all defined tests)
Time consumption 1.636s

2.3 Coverage Statistic

Module- or Filename Line-Coverage Branch-Coverage

state_machine 100.0% 100.0%
state machine.__init__.py 100.0%

5/[69

Unittest for state_machine

3 Tested Requirements

3.1 Module Initialisation

3.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

State machine is in the initial state after initialisation.

Testresult
This test was passed with the state: . See also full trace in section [A.1.7]
Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (22)
Start-Time: 2020-06-16 09:01:50,021
Finished-Time: 2020-06-16 09:01:50,022
Time-Consumption 0.000s
Testsummary:
Info Initialising the state machine with state_c
State after initialisation is correct (Content 'state ¢’ and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.1]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (22)
Start-Time: 2020-06-16 09:01:52,065
Finished-Time: 2020-06-16 09:01:52,066
Time-Consumption 0.000s
Testsummary:
Info Initialising the state machine with state_c

State after initialisation is correct (Content 'state_c' and Type is <class 'str'>).

3.1.2 Default Last Transition Condtion

Description

The state machine shall return the string __init__ for last transition condition after initalisation.

6/[69

Unittest for state_machine

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is __init__ after initialisation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.2]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (23)

Start-Time: 2020-06-16 09:01:50,022

Finished-Time: 2020-06-16 09:01:50,022

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c
Last transition condition after initialisation is correct (Content '__init__' and Type is <type
'str’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.2]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (23)
Start-Time: 2020-06-16 09:01:52,066

Finished-Time: 2020-06-16 09:01:52,066

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c

Last transition condition after initialisation is correct (Content '__init__" and Type is <class
'str'>).

3.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

7/

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [A.1.3]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (24)

Start-Time: 2020-06-16 09:01:50,022

Finished-Time: 2020-06-16 09:01:50,023

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c

Last state after initialisation is correct (Content None and Type is <type 'NoneType'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.3]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (24)
Start-Time: 2020-06-16 09:01:52,066

Finished-Time: 2020-06-16 09:01:52,066

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c

Last state after initialisation is correct (Content None and Type is <class 'NoneType'>).

3.1.4 Additional Keyword Arguments

Description

The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation

Store further information (e.g. for calculation of the transition conditions).

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.4]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 2.7.17 (final)
/user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (25)
2020-06-16 09:01:50,023

2020-06-16 09:01:50,027

0.004s

8/[69

Unittest for state_machine

Testsummary:
Info Initialising the state machine with state_c
Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": 'two'}
and Type is <type 'dict'>).
Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <type
'int’>).
Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is
<type 'bool">).
Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2' and Type is
<type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.4]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (25)
Start-Time: 2020-06-16 09:01:52,066
Finished-Time: 2020-06-16 09:01:52,067
Time-Consumption 0.001s
Testsummary:
Info Initialising the state machine with state_c

Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <class
'int'>).

Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2' and Type is
<class 'str'>).

Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is
<class 'bool'>).

Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": "two'}
and Type is <class 'dict’>).

3.2 Transition Changes
3.2.1 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start
state, a target state and a transition condition. The transition condition shall be a method, where the user is able to
calculate the condition on demand.

Reason for the implementation
Definition of the transitions for a state machine.

Fitcriterion

The order of at least three state changes is correct.

9/[69

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [A.1.5]

Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (28)
Start-Time: 2020-06-16 09:01:50,027
Finished-Time: 2020-06-16 09:01:50,031
Time-Consumption 0.004s
Testsummary:
Info Initialising state machine with state_a
Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).
Info Work routine executed the 1st time to do the state change. Defined Transitions are:
True—state_b (0.0s); False—state_c (0.0s)
State after 1st execution of work method is correct (Content 'state_b’ and Type is <type 'str'>).
Info Work routine executed the 2nd time to do the state change. Defined Transitions are:
False—state_a (0.0s); True—sstate_c (0.0s)
State after 2nd execution of work method is correct (Content 'statec’ and Type is <type
'str'>).
Info Work routine executed the 3rd time with no effect. No Transitions starting from state_c (dead
end)
State after 3rd execution of work method is correct (Content 'state_c’ and Type is <type 'str'>).
Testresult

This test was passed with the state:

. See also full trace in section [B.1.5]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (28)

Start-Time: 2020-06-16 09:01:52,067

Finished-Time: 2020-06-16 09:01:52,068

Time-Consumption 0.001s

Testsummary:

Info Initialising state machine with state_a
Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str’>).

Info Work routine executed the 1st time to do the state change. Defined Transitions are:
True—state_b (0.0s); False—state_c (0.0s)
State after 1st execution of work method is correct (Content 'state_b’ and Type is <class
'str’>).

Info Work routine executed the 2nd time to do the state change. Defined Transitions are:
False—state_a (0.0s); True—state_c (0.0s)
State after 2nd execution of work method is correct (Content 'state_c’ and Type is <class
'str'>).

Info Work routine executed the 3rd time with no effect. No Transitions starting from state_c (dead
end)

State after 3rd execution of work method is correct (Content 'state_c’ and Type is <class
'str'>).

10/[65]

Unittest for state_machine

3.2.2 Transitiontiming

Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

Reason for the implementation

Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion

The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (£0.05s).

Testresult

This test was passed with the state:

. See also full trace in section [A.1.6]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (29)

Start-Time: 2020-06-16 09:01:50,032

Finished-Time: 2020-06-16 09:01:50,413

Time-Consumption 0.381s

Testsummary:

Info Initialising state machine with state_a
Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).

Info Waiting for 0.160s or state change
State after 1st cycle is correct (Content 'state_b’ and Type is <type 'str'>).
Transition time after 1st cycle is correct (Content 0.15041112899780273 in [0.145 ... 0.155]
and Type is <type 'float’>).

Info Waiting for 0.235s or state change
State after 2nd cycle is correct (Content 'state_c’ and Type is <type 'str'>).
Transition time after 2nd cycle is correct (Content 0.15091490745544434 in [0.145 ... 0.155]
and Type is <type 'float’>).
Previous state duration is correct (Content 0.22620105743408203 in [0.21999999999999997 ...
0.22999999999999998] and Type is <type 'float’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.6]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (29)
Start-Time: 2020-06-16 09:01:52,068

Finished-Time: 2020-06-16 09:01:52,447

Time-Consumption 0.379s

Testsummary:

Info Initialising state machine with state_a

11/[64

Unittest for state_machine

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).
Info Waiting for 0.160s or state change
State after 1st cycle is correct (Content 'state_b’ and Type is <class 'str'>).
Transition time after 1st cycle is correct (Content 0.1506061553955078 in [0.145 ... 0.155] and

Type is <class 'float’>).
Info Waiting for 0.235s or state change

State after 2nd cycle is correct (Content 'state_c’ and Type is <class 'str'>).
Transition time after 2nd cycle is correct (Content 0.15029168128967285 in [0.145 ... 0.155]

and Type is <class 'float'>).
Previous state duration is correct (Content 0.22554683685302734 in [0.21999999999999997 ...

0.22999999999999998] and Type is <class 'float>).

3.2.3 Transitionpriorisation

Description
The state machine shall use the first active transition. If multiple transition are active, the transition with the highest
overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion
At least one transition with at least two active conditions results in the expected state change.

Testresult
This test was passed with the state: . See also full trace in section [A.1.7]
Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (30)
Start-Time: 2020-06-16 09:01:50,413
Finished-Time: 2020-06-16 09:01:50,659
Time-Consumption 0.245s
Testsummary:
Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to
state_c after 0.150s
Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).
Info Waiting for 0.300s or state change
State after 1st cycle is correct (Content 'state_c’ and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.7]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (30)
Start-Time: 2020-06-16 09:01:52,447

12/

Unittest for state_machine

Finished-Time: 2020-06-16 09:01:52,691

Time-Consumption 0.244s

Testsummary:

Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to
state_c after 0.150s
Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Info Waiting for 0.300s or state change

State after 1st cycle is correct (Content 'state_c’ and Type is <class 'str'>).

3.3 Module Interface

3.3.1 This State

Description

The Module shall have a method for getting the current state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.8]

Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (33)
Start-Time: 2020-06-16 09:01:50,659
Finished-Time: 2020-06-16 09:01:50,660
Time-Consumption 0.001s
Testsummary:
Info Initialising the state machine with state_c
Returnvalue of this_state() is correct (Content 'state_c’ and Type is <type 'str'>).
Testresult

This test was passed with the state:

. See also full trace in section [B1.8]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.6.9 (final)
/user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (33)
2020-06-16 09:01:52,691

2020-06-16 09:01:52,691

0.000s

Testsummary:

13/[69]

Info

Unittest for state_machine

Initialising the state machine with state_c

Returnvalue of this_state() is correct (Content 'state_c’ and Type is <class 'str'>).

3.3.2 This State is

Description

The Module shall have a method for checking if the given state is currently active.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.9]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (34)

Start-Time: 2020-06-16 09:01:50,660

Finished-Time: 2020-06-16 09:01:50,661

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state_c
Returnvalue of this_state_is(state_c) is correct (Content True and Type is <type 'bool">).
Returnvalue of this_state_is(state_b) is correct (Content False and Type is <type 'bool">).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.9]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (34)
Start-Time: 2020-06-16 09:01:52,691

Finished-Time: 2020-06-16 09:01:52,692

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c

Returnvalue of this_state_is(state_c) is correct (Content True and Type is <class 'bool">).

Returnvalue of this_state_is(state_b) is correct (Content False and Type is <class 'bool">).

14 /[65]

Unittest for state_machine

3.3.3 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the current state duration (£ 0.05s).

Testresult

This test was passed with the state:

. See also full trace in section [A.1.10]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (35)

Start-Time: 2020-06-16 09:01:50,662

Finished-Time: 2020-06-16 09:01:50,913

Time-Consumption 0.252s

Testsummary:

Info Running state machine test sequence.
Return Value of this_state_duration() is correct (Content 0.2509438991546631 in [0.2 ... 0.3]
and Type is <type 'float’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.10]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (35)
Start-Time: 2020-06-16 09:01:52,692

Finished-Time: 2020-06-16 09:01:52,942

Time-Consumption 0.251s

Testsummary:

Info Running state machine test sequence.

Return Value of this_state_duration() is correct (Content 0.25031614303588867 in [0.2 ... 0.3]
and Type is <class 'float'>).

3.3.4 Last Transition Condition

Description

The Module shall have a method for getting the last transition condition.

15 /64

Unittest for state_machine

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned transition condition fits to the expectation.

Testresult

This test was passed with the state:

. See also full trace in section [A.I.11]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (36)

Start-Time: 2020-06-16 09:01:50,914

Finished-Time: 2020-06-16 09:01:50,914

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.
Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <type
'str’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.11]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (36)
Start-Time: 2020-06-16 09:01:52,943

Finished-Time: 2020-06-16 09:01:52,943

Time-Consumption 0.000s

Testsummary:

Info Running state machine test sequence.

Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <class
'str'>).

3.3.5 Last Transition Condition was

Description

The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

16 / [65]

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [A.1.12]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (37)

Start-Time: 2020-06-16 09:01:50,914

Finished-Time: 2020-06-16 09:01:50,915

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.
Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <type
'bool">).
Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is <type
'bool’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.12]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (37)
Start-Time: 2020-06-16 09:01:52,943

Finished-Time: 2020-06-16 09:01:52,944

Time-Consumption 0.000s

Testsummary:

Info Running state machine test sequence.

Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <class
'bool’>).

Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is
<class 'bool">).

3.3.6 Previous State

Description

The Module shall have a method for getting the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.13]

17/[64

Unittest for state_machine

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (38)

Start-Time: 2020-06-16 09:01:50,915

Finished-Time: 2020-06-16 09:01:50,916

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B:1.13]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (38)
Start-Time: 2020-06-16 09:01:52,944

Finished-Time: 2020-06-16 09:01:52,944

Time-Consumption 0.000s

Testsummary:

Info Running state machine test sequence.

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <class 'str'>).

3.3.7 Previous State was

Description

The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.14]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (39)
Start-Time: 2020-06-16 09:01:50,916

Finished-Time: 2020-06-16 09:01:50,917

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <type 'bool’>).

18 /[69]

Unittest for state_machine

Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <type 'bool'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.14]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (39)
Start-Time: 2020-06-16 09:01:52,944

Finished-Time: 2020-06-16 09:01:52,944

Time-Consumption 0.000s

Testsummary:

Info Running state machine test sequence.

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <class 'bool'>).
Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <class
'bool’>).

3.3.8 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (£ 0.05s).

Testresult

This test was passed with the state:

. See also full trace in section [A.1.15]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (40)

Start-Time: 2020-06-16 09:01:50,917

Finished-Time: 2020-06-16 09:01:51,669

Time-Consumption 0.752s

Testsummary:

Info Running state machine test sequence.
Return Value of previous_state_duration() is correct (Content 0.751147985458374 in [0.7 ...
0.8] and Type is <type 'float’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.15]

19 /[65]

Unittest for state_machine

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (40)
Start-Time: 2020-06-16 09:01:52,945

Finished-Time: 2020-06-16 09:01:53,696

Time-Consumption 0.751s

Testsummary:

Info Running state machine test sequence.

Return Value of previous_state_duration() is correct (Content 0.7510056495666504 in [0.7 ...
0.8] and Type is <class 'float'>).

3.4 Transition Callbacks

3.4.1 State change callback for a defined transition and targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition_condition and target_state.

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and targetstate and at least for one other condition not.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.16]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (43)

Start-Time: 2020-06-16 09:01:51,669

Finished-Time: 2020-06-16 09:01:51,672

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback
Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Testresult

This test was passed with the state:

. See also full trace in section [B.1.16]

20 / [65]

Unittest for state_machine

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (43)
Start-Time: 2020-06-16 09:01:53,696

Finished-Time: 2020-06-16 09:01:53,697

Time-Consumption 0.001s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

3.4.2 State change callback for a defined transition

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition_condition and all target_states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and at least for one other transition condition not.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.17]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (44)
Start-Time: 2020-06-16 09:01:51,672

Finished-Time: 2020-06-16 09:01:51,675

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all-transitions, condition_b) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

21/ [65]

Unittest for state_machine

Testresult
This test was passed with the state: . See also full trace in section [B.1.1I7]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (44)
Start-Time: 2020-06-16 09:01:53,697
Finished-Time: 2020-06-16 09:01:53,699
Time-Consumption 0.001s
Testsummary:
Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all_transitions, condition_b) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

3.4.3 State change callback for a defined targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transition_conditions and a defined target_state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion
Methods are called in the registration order after state change with the defined targetstate and at least for one other
targetstate not.

Testresult
This test was passed with the state: . See also full trace in section |A.1.18]
Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (45)
Start-Time: 2020-06-16 09:01:51,675
Finished-Time: 2020-06-16 09:01:51,679
Time-Consumption 0.003s
Testsummary:
Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.

22/ [65]

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [B.1.18]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (45)
Start-Time: 2020-06-16 09:01:53,699

Finished-Time: 2020-06-16 09:01:53,700

Time-Consumption 0.001s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.

3.4.4 State change callback for all kind of state changes

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.19]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (46)
Start-Time: 2020-06-16 09:01:51,679

Finished-Time: 2020-06-16 09:01:51,683

Time-Consumption 0.004s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

23/ [65]

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [B.1.19]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (46)
Start-Time: 2020-06-16 09:01:53,701

Finished-Time: 2020-06-16 09:01:53,703

Time-Consumption 0.002s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

3.4.5 Execution order of Callbacks

Description

The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation

User shall have the control about the execution order.

Fitcriterion

A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had

been regestered first.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.20]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (47)

Start-Time: 2020-06-16 09:01:51,683

Finished-Time: 2020-06-16 09:01:51,684

Time-Consumption 0.001s

Testsummary:
Callback execution order: Values and number of submitted values is correct. See detailed log
for more information.

Testresult

This test was passed with the state:

. See also full trace in section [B.1.20]

24 / [65]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

Unittest for state_machine

python 3.6.9 (final)
/user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (47)
2020-06-16 09:01:53,703

2020-06-16 09:01:53,703

0.001s

Testsummary:

Success

Callback execution order: Values and number of submitted values is correct. See detailed log

for more information.

25/ [69]

Unittest for state_machine

A Trace for testrun with python 2.7.17 (final)

A.1 Tests with status Info (20)
A.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion
State machine is in the initial state after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

State after initialisation is correct (Content 'state_c’ and Type is <type 'str'>).

Result (State after initialisation): 'state_c' (<type 'str'>)

Expectation (State after initialisation): result = 'state_c' (<type 'str'>)
A.1.2 Default Last Transition Condtion

Description
The state machine shall return the string __init__ for last transition condition after initalisation.

Reason for the implementation
Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is __init__ after initialisation.

26/

Unittest for state_machine

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last transition condition after initialisation is correct (Content '__init__" and Type is <type 'str'>).

Result (Last transition condition after initialisation): '__init__' (<type 'str'>)

Expectation (Last transition condition after initialisation): result = '__init__' (<type
- 'str'>)

A.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last state after initialisation is correct (Content None and Type is <type 'NoneType'>).

Result (Last state after initialisation): None (<type 'NoneType'>)

Expectation (Last state after initialisation): result = None (<type 'NoneType'>)
A.1.4 Additional Keyword Arguments

Description
The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation
Store further information (e.g. for calculation of the transition conditions).

27/

Unittest for state_machine

Fitcriterion
At least two given keyword arguments with different types are available after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": "two'} and Type
is <type 'dict'>).

Result (Keyword argument kw_arg no_4 stored in state_machine): { '1': 1, '2': 'two' } (<type
— 'dict'>)

Expectation (Keyword argument kw_arg no_4 stored in state_machine): result = { '1': 1, '2':
- ‘'two' } (<type 'dict'>)

Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <type 'int’>).

Result (Keyword argument kw_arg no_1 stored in state_machine): 1 (<type 'int'>)

Expectation (Keyword argument kw_arg no_1 stored in state_machine): result = 1 (<type 'int'>)

Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is <type
'bool’>).

Result (Keyword argument kw_arg no_3 stored in state_machine): True (<type 'bool'>)

Expectation (Keyword argument kw_arg_no_3 stored in state_machine): result = True (<type
— 'bool'>)

Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2" and Type is <type 'str’>).

Result (Keyword argument kw_arg no_2 stored in state_machine): '2' (<type 'str'>)

Expectation (Keyword argument kw_arg _no_2 stored in state_machine): result = '2' (<type
s 'Str'>)

A.1.5 Transitiondefinition and -flow
Description
The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation
Definition of the transitions for a state machine.

28/

Unittest for state_machine

Fitcriterion
The order of at least three state changes is correct.

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).

Result (Initial state after Initialisation): 'state_a' (<type 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<type 'str'>)

Inffo Work routine executed the 1st time to do the state change. Defined Transitions are: True—state_b (0.0s);
False—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

State after 1st execution of work method is correct (Content 'state_b’ and Type is <type 'str'>).

Result (State after 1st execution of work method): 'state_b' (<type 'str'>)

Expectation (State after 1st execution of work method): result = 'state_b' (<type 'str'>)

Inffo Work routine executed the 2nd time to do the state change. Defined Transitions are: False—state_a (0.0s);
True—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd execution of work method is correct (Content 'state_c’ and Type is <type 'str'>).

Result (State after 2nd execution of work method): 'state_c' (<type 'str'>)

Expectation (State after 2nd execution of work method): result = 'state_c' (<type 'str'>)

Info Work routine executed the 3rd time with no effect. No Transitions starting from state_c (dead end)

State after 3rd execution of work method is correct (Content 'state_c’ and Type is <type 'str’>).

Result (State after 3rd execution of work method): 'state_c' (<type 'str'>)

Expectation (State after 3rd execution of work method): result = 'state_c' (<type 'str'>)
A.1.6 Transitiontiming
Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

29/

Unittest for state_machine

Reason for the implementation
Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion
The transition time and the restart of the transion timer by setting the transition condition to False and to True again
results in the expected transition timing (+0.05s).

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).

Result (Initial state after Initialisation): 'state_a' (<type 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<type 'str'>)

Info Waiting for 0.160s or state change

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

State after 1st cycle is correct (Content 'state_b’ and Type is <type 'str'>).

Result (State after 1st cycle): 'state_b' (<type 'str'>)

Expectation (State after 1st cycle): result = 'state_b' (<type 'str'>)

Transition time after 1st cycle is correct (Content 0.15041112899780273 in [0.145 ... 0.155] and Type is
<type 'float'>).

Result (Transition time after 1st cycle): 0.15041112899780273 (<type 'float'>)
Expectation (Transition time after 1st cycle): 0.145 <= result <= 0.155

Info Waiting for 0.235s or state change

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd cycle is correct (Content 'state_c’ and Type is <type 'str’>).

Result (State after 2nd cycle): 'state_c' (<type 'str'>)

Expectation (State after 2nd cycle): result = 'state_c' (<type 'str'>)

Transition time after 2nd cycle is correct (Content 0.15091490745544434 in [0.145 ... 0.155] and Type
is <type 'float'>).

30/

Unittest for state_machine

Result (Transition time after 2nd cycle): 0.15091490745544434 (<type 'float'>)

Expectation (Transition time after 2nd cycle): 0.145 <= result <= 0.155

Previous state duration is correct (Content 0.22620105743408203 in [0.21999999999999997
0.22999999999999998] and Type is <type 'float">).

Result (Previous state duration): 0.22620105743408203 (<type 'float'>)
Expectation (Previous state duration): 0.21999999999999997 <= result <= 0.22999999999999998

A.1.7 Transitionpriorisation
Description

The state machine shall use the first active transition. If multiple transition are active, the transition with the highest
overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion
At least one transition with at least two active conditions results in the expected state change.

Testresult
This test was passed with the state:

Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to state_c after
0.150s

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).

Result (Initial state after Initialisation): 'state_a' (<type 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<type 'str'>)

Info Waiting for 0.300s or state change

Executing method work after 0.000s
Executing method work after 0.061s
Executing method work after 0.122s
Executing method work after 0.182s

StateMachine: State change ('condition_true'): 'state_a' -> 'state_c'

State after 1st cycle is correct (Content 'state_c’ and Type is <type 'str’>).

Result (State after 1st cycle): 'state_c' (<type 'str'>)
Expectation (State after 1st cycle): result = 'state_c' (<type 'str'>)

31/

Unittest for state_machine

A.1.8 This State

Description
The Module shall have a method for getting the current state.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state() is correct (Content 'state_c’ and Type is <type 'str'>).

Result (Returnvalue of this_state()): 'state_c' (<type 'str'>)

Expectation (Returnvalue of this_state()): result = 'state_c' (<type 'str'>)

A.1.9 This State is

Description
The Module shall have a method for checking if the given state is currently active.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state_is(state_c) is correct (Content True and Type is <type 'bool'>).

32/

Unittest for state_machine

Result (Returnvalue of this_state_is(state_c)): True (<type 'bool'>)

Expectation (Returnvalue of this_state_is(state_c)): result = True (<type 'bool'>)

Returnvalue of this_state_is(state_b) is correct (Content False and Type is <type 'bool'>).

Result (Returnvalue of this_state_is(state_b)): False (<type 'bool'>)

Expectation (Returnvalue of this_state_is(state_b)): result = False (<type 'bool'>)

A.1.10 This State Duration

Description
The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least one returned duration fits to the current state duration (£ 0.05s).

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.25s

Return Value of this_state_duration() is correct (Content 0.2509438991546631 in [0.2 ... 0.3] and Type
is <type 'float'>).

Result (Return Value of this_state_duration()): 0.2509438991546631 (<type 'float'>)

Expectation (Return Value of this_state_duration()): 0.2 <= result <= 0.3
A.1.11 Last Transition Condition

Description
The Module shall have a method for getting the last transition condition.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least one returned transition condition fits to the expectation.

33/

Unittest for state_machine

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <type 'str'>).

Result (Returnvalue of last_transition_condition()): 'condition_a' (<type 'str'>)

Expectation (Returnvalue of last_transition_condition()): result = 'condition_a' (<type
- 'str'>)

A.1.12 Last Transition Condition was

Description
The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <type 'bool’>).

Result (Returnvalue of last_transition_condition(condition_a)): True (<type 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_a)): result = True (<type
< 'bool'>)

Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is <type 'bool’>).

Result (Returnvalue of last_transition_condition(condition_c)): False (<type 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_c)): result = False (<type
< 'bool'>)

34/

Unittest for state_machine

A.1.13 Previous State

Description
The Module shall have a method for getting the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least one returend state fits to the expecation.

Testresult

This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <type 'str'>).

Result (Returnvalue of previous_state()): 'state_a' (<type 'str'>)

Expectation (Returnvalue of previous_state()): result = 'state_a' (<type 'str'>)

A.1.14 Previous State was

Description
The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <type 'bool'>).

35/

Unittest for state_machine

Result (Returnvalue of previous_state_was(state_a)): True (<type 'bool'>)

Expectation (Returnvalue of previous_state_was(state_a)): result = True (<type 'bool'>)

Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <type 'bool’>).

Result (Returnvalue of previous_state_was(state_b)): False (<type 'bool'>)

Expectation (Returnvalue of previous_state_was(state_b)): result = False (<type 'bool'>)

A.1.15 Previous State Duration

Description
The Module shall have a method for getting active time for the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (£ 0.05s).

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Waiting for 0.75s

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Return Value of previous_state_duration() is correct (Content 0.751147985458374 in [0.7 ... 0.8] and
Type is <type 'float'>).

Result (Return Value of previous_state_duration()): 0.751147985458374 (<type 'float'>)

Expectation (Return Value of previous_state_duration()): 0.7 <= result <= 0.8
A.1.16 State change callback for a defined transition and targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments
for a defined set of transition_condition and target_state.

Reason for the implementation
Triggering state change actions for a specific transition condition and targetstate.

36/

Unittest for state_machine

Fitcriterion
Methods are called in the registration order after state change with all user given arguments for the defined transition
condition and targetstate and at least for one other condition not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Increasing sequence number to 6 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, condition_a) identified by a

— sequence number): [1] (<type 'list'>)

Expectation (Execution of state machine callback (1) (state_b, condition_a) identified by a

— sequence number): result = [1] (<type 'list'>)
Result (Submitted value number 1): 1 (<type 'int'>)
Expectation (Submitted value number 1): result = 1 (<type 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <type 'int'>).

Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, condition_a) identified by a

- sequence number): [2] (<type 'list'>)

Expectation (Execution of state machine callback (2) (state_b, condition_a) identified by a

< sequence number): result = [2] (<type 'list'>)
Result (Submitted value number 1): 2 (<type 'int'>)
Expectation (Submitted value number 1): result = 2 (<type 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).

37/ 165

Unittest for state_machine

A.1.17 State change callback for a defined transition

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition_condition and all target_states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion
Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and at least for one other transition condition not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Increasing sequence number to 2 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 4 caused by callback_execution
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (all_transitions, condition_b) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

38/

Unittest for state_machine

Result (Execution of state machine callback (1) (all_transitions, condition_b) identified by

— a sequence number): [2, 5] (<type 'list'>)

Expectation (Execution of state machine callback (1) (all_transitions, condition_b)

— identified by a sequence number): result = [2, 5] (<type 'list'>)
Result (Submitted value number 1): 2 (<type 'int'>)

Expectation (Submitted value number 1): result = 2 (<type 'int'>)
Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).
Result (Submitted value number 2): 5 (<type 'int'>)

Expectation (Submitted value number 2): result = 5 (<type 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <type 'int'>).

Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, condition_b) identified by

— a sequence number): [3, 6] (<type 'list'>)

Expectation (Execution of state machine callback (2) (all_transitions, condition_b)

— identified by a sequence number): result = [3, 6] (<type 'list'>)
Result (Submitted value number 1): 3 (<type 'int'>)

Expectation (Submitted value number 1): result = 3 (<type 'int'>)
Submitted value number 1 is correct (Content 3 and Type is <type 'int'>).
Result (Submitted value number 2): 6 (<type 'int'>)

Expectation (Submitted value number 2): result = 6 (<type 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <type 'int'>).
A.1.18 State change callback for a defined targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments
for all transition_conditions and a defined target_state.

Reason for the implementation
Triggering state change actions for a specific targetstate.

Fitcriterion
Methods are called in the registration order after state change with the defined targetstate and at least for one other

targetstate not.

39/

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress
StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence number: Values
and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, all_conditions) identified by a

— sequence number): [1, 5] (<type 'list'>)

Expectation (Execution of state machine callback (1) (state_b, all_conditions) identified by
— a sequence number): result = [1, 5] (<type 'list'>)

Result (Submitted value number 1): 1 (<type 'int'>)

Expectation (Submitted value number 1): result = 1 (<type 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <type 'int'>).

Result (Submitted value number 2): 5 (<type 'int'>)

Expectation (Submitted value number 2): result = 5 (<type 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <type 'int'>).

Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence number: Values
and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, all_conditions) identified by a

— sequence number): [2, 6] (<type 'list'>)

Expectation (Execution of state machine callback (2) (state_b, all_conditions) identified by
— a sequence number): result = [2, 6] (<type 'list'>)

Result (Submitted value number 1): 2 (<type 'int'>)

Expectation (Submitted value number 1): result = 2 (<type 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).

Result (Submitted value number 2): 6 (<type 'int'>)

Expectation (Submitted value number 2): result = 6 (<type 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <type 'int'>).

Unittest for state_machine

A.1.19 State change callback for all kind of state changes

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments
for all transitions.

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 5 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Increasing sequence number to 7 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 8 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 9 caused by callback_execution
Increasing sequence number to 10 caused by sequence progress
StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 11 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 12 caused by callback_execution

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

41 /165

Unittest for state_machine

Result (Execution of state machine callback (1) (all_transitions, all_conditions) identified
— Dby a sequence number): [1, 4, 7, 10] (<type 'list'>)

Expectation (Execution of state machine callback (1) (all_transitions, all_conditions)
— identified by a sequence number): result = [1, 4, 7, 10] (<type 'list'>)

Result (Submitted value number 1): 1 (<type 'int'>)

Expectation (Submitted value number 1): result = 1 (<type 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <type 'int'>).

Result (Submitted value number 2): 4 (<type 'int'>)

Expectation (Submitted value number 2): result = 4 (<type 'int'>)

Submitted value number 2 is correct (Content 4 and Type is <type 'int'>).

Result (Submitted value number 3): 7 (<type 'int'>)

Expectation (Submitted value number 3): result = 7 (<type 'int'>)

Submitted value number 3 is correct (Content 7 and Type is <type 'int'>).

Result (Submitted value number 4): 10 (<type 'int'>)

Expectation (Submitted value number 4): result = 10 (<type 'int'>)

Submitted value number 4 is correct (Content 10 and Type is <type 'int'>).

Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, all_conditions) identified
— Dby a sequence number): [2, 5, 8, 11] (<type 'list'>)

Expectation (Execution of state machine callback (2) (all_transitions, all_conditions)
< identified by a sequence number): result = [2, 5, 8, 11] (<type 'list'>)

Result (Submitted value number 1): 2 (<type 'int'>)

Expectation (Submitted value number 1): result = 2 (<type 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).

Result (Submitted value number 2): 5 (<type 'int'>)

Expectation (Submitted value number 2): result = 5 (<type 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <type 'int'>).

Result (Submitted value number 3): 8 (<type 'int'>)

Expectation (Submitted value number 3): result = 8 (<type 'int'>)

Submitted value number 3 is correct (Content 8 and Type is <type 'int'>).

Result (Submitted value number 4): 11 (<type 'int'>)

Expectation (Submitted value number 4): result = 11 (<type 'int'>)

Submitted value number 4 is correct (Content 11 and Type is <type 'int'>).

A.1.20 Execution order of Callbacks

Description
The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation
User shall have the control about the execution order.

42 /165

Unittest for state_machine

Fitcriterion
A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had
been regestered first.

Testresult
This test was passed with the state:

Callback execution order: Values and number of submitted values is correct. See detailed log for more
information.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback O - unittest.test.report_value

Executing callback 1 - unittest.test.report_value

Result (Callback execution order): ['specific callback', 'nonspecific callback'] (<type
-~ 'list'>)

Expectation (Callback execution order): result = ['specific callback', 'nonspecific

— callback'] (<type 'list'>)

Result (Submitted value number 1): 'specific callback' (<type 'str'>)

Expectation (Submitted value number 1): result = 'specific callback' (<type 'str'>)
Submitted value number 1 is correct (Content 'specific callback' and Type is <type 'str'>).
Result (Submitted value number 2): 'nonspecific callback' (<type 'str'>)

Expectation (Submitted value number 2): result = 'nonspecific callback' (<type 'str'>)

Submitted value number 2 is correct (Content 'nonspecific callback' and Type is <type 'str'>).

B Trace for testrun with python 3.6.9 (final)

B.1 Tests with status Info (20)
B.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation
Creation of a defined state after initialisation.

Fitcriterion
State machine is in the initial state after initialisation.

43/

Unittest for state_machine

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

State after initialisation is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after initialisation): 'state_c' (<class 'str'>)

Expectation (State after initialisation): result = 'state_c' (<class 'str'>)

B.1.2 Default Last Transition Condtion

Description
The state machine shall return the string __init__ for last transition condition after initalisation.

Reason for the implementation
Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is __init__ after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last transition condition after initialisation is correct (Content '__init__" and Type is <class 'str'>).

Result (Last transition condition after initialisation): '__init__' (<class 'str'>)

Expectation (Last transition condition after initialisation): result = '__init__' (<class
- 'str'>)

B.1.3 Default Previous State

Description
The state machine shall return None for previous state after initalisation.

Reason for the implementation
Creation of a defined state after initialisation.

44 /

Unittest for state_machine

Fitcriterion
The previous state is None after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last state after initialisation is correct (Content None and Type is <class 'NoneType'>).

Result (Last state after initialisation): None (<class 'NoneType'>)

Expectation (Last state after initialisation): result = None (<class 'NoneType'>)
B.1.4 Additional Keyword Arguments

Description
The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation

Store further information (e.g. for calculation of the transition conditions).

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

Testresult

This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <class 'int’>).

Result (Keyword argument kw_arg no_1 stored in state_machine): 1 (<class 'int'>)

Expectation (Keyword argument kw_arg no_1 stored in state_machine): result = 1 (<class 'int'>)

Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2' and Type is <class 'str'>).

Result (Keyword argument kw_arg no_2 stored in state_machine): '2' (<class 'str'>)

Expectation (Keyword argument kw_arg no_2 stored in state_machine): result = '2' (<class
- 'str'>)

Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is <class
'bool">).

45 /

Unittest for state_machine

Result (Keyword argument kw_arg no_3 stored in state_machine): True (<class 'bool'>)

Expectation (Keyword argument kw_arg _no_3 stored in state_machine): result = True (<class
— 'bool'>)

Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": "two'} and Type
is <class 'dict’>).

Result (Keyword argument kw_arg no_4 stored in state_machine): { '1': 1, '2': 'two' } (<class
— 'diCt'>)

Expectation (Keyword argument kw_arg no_4 stored in state_machine): result = { '1': 1, '2':
< 'two' } (<class 'dict'>)

B.1.5 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start
state, a target state and a transition condition. The transition condition shall be a method, where the user is able to
calculate the condition on demand.

Reason for the implementation
Definition of the transitions for a state machine.

Fitcriterion
The order of at least three state changes is correct.

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Work routine executed the 1st time to do the state change. Defined Transitions are: True—state_b (0.0s);
False—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

State after 1st execution of work method is correct (Content 'state_b’ and Type is <class 'str'>).

46 /

Unittest for state_machine

Result (State after 1st execution of work method): 'state_b' (<class 'str'>)

Expectation (State after 1st execution of work method): result = 'state_b' (<class 'str'>)

Info Work routine executed the 2nd time to do the state change. Defined Transitions are: False—state_a (0.0s);
True—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd execution of work method is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 2nd execution of work method): 'state_c' (<class 'str'>)

Expectation (State after 2nd execution of work method): result = 'state_c' (<class 'str'>)

Inffo Work routine executed the 3rd time with no effect. No Transitions starting from state_c (dead end)

State after 3rd execution of work method is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 3rd execution of work method): 'state_c' (<class 'str'>)

Expectation (State after 3rd execution of work method): result = 'state_c' (<class 'str'>)
B.1.6 Transitiontiming

Description
The user shall be able to define for each transition a transition time. On change of the transition condition to True, the
transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

Reason for the implementation
Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion
The transition time and the restart of the transion timer by setting the transition condition to False and to True again
results in the expected transition timing (+0.05s).

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Waiting for 0.160s or state change

47/

Unittest for state_machine

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

State after 1st cycle is correct (Content 'state_b’ and Type is <class 'str'>).

Result (State after 1st cycle): 'state_b' (<class 'str'>)

Expectation (State after 1st cycle): result = 'state_b' (<class 'str'>)

Transition time after 1st cycle is correct (Content 0.1506061553955078 in [0.145 ... 0.155] and Type is
<class 'float’>).

Result (Transition time after 1st cycle): 0.1506061553955078 (<class 'float'>)

Expectation (Transition time after 1st cycle): 0.145 <= result <= 0.155

Info Waiting for 0.235s or state change

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd cycle is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 2nd cycle): 'state_c' (<class 'str'>)

Expectation (State after 2nd cycle): result = 'state_c' (<class 'str'>)

Transition time after 2nd cycle is correct (Content 0.15029168128967285 in [0.145 ... 0.155] and Type
is <class 'float'>).

Result (Transition time after 2nd cycle): 0.15029168128967285 (<class 'float'>)

Expectation (Transition time after 2nd cycle): 0.145 <= result <= 0.155

Previous state duration is correct (Content 0.22554683685302734 in [0.21999999999999997
0.22999999999999998] and Type is <class 'float’>).

Result (Previous state duration): 0.22554683685302734 (<class 'float'>)
Expectation (Previous state duration): 0.21999999999999997 <= result <= 0.22999999999999998

B.1.7 Transitionpriorisation

Description
The state machine shall use the first active transition. If multiple transition are active, the transition with the highest
overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion

At least one transition with at least two active conditions results in the expected state change.

48 /

Unittest for state_machine

Testresult
This test was passed with the state:

Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to state_c after
0.150s

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Waiting for 0.300s or state change

Executing method work after 0.000s
Executing method work after 0.060s
Executing method work after 0.121s
Executing method work after 0.181s

StateMachine: State change ('condition_true'): 'state_a' -> 'state_c'

State after 1st cycle is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 1st cycle): 'state_c' (<class 'str'>)
Expectation (State after 1st cycle): result = 'state_c' (<class 'str'>)

B.1.8 This State

Description
The Module shall have a method for getting the current state.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least one returend state fits to the expecation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state() is correct (Content 'state_c’ and Type is <class 'str’>).

Result (Returnvalue of this_state()): 'state_c' (<class 'str'>)

Expectation (Returnvalue of this_state()): result = 'state_c' (<class 'str'>)

49 /

Unittest for state_machine

B.1.9 This State is

Description
The Module shall have a method for checking if the given state is currently active.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state_is(state_c) is correct (Content True and Type is <class 'bool">).

Result (Returnvalue of this_state_is(state_c)): True (<class 'bool'>)

Expectation (Returnvalue of this_state_is(state_c)): result = True (<class 'bool'>)

Returnvalue of this_state_is(state_b) is correct (Content False and Type is <class 'bool'>).

Result (Returnvalue of this_state_is(state_b)): False (<class 'bool'>)

Expectation (Returnvalue of this_state_is(state_b)): result = False (<class 'bool'>)
B.1.10 This State Duration

Description
The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion
At least one returned duration fits to the current state duration (4 0.05s).

50/

Unittest for state_machine

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.25s

Return Value of this_state_duration() is correct (Content 0.25031614303588867 in [0.2 ... 0.3] and Type
is <class 'float’>).

Result (Return Value of this_state_duration()): 0.25031614303588867 (<class 'float'>)

Expectation (Return Value of this_state_duration()): 0.2 <= result <= 0.3

B.1.11 Last Transition Condition

Description
The Module shall have a method for getting the last transition condition.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least one returned transition condition fits to the expectation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <class 'str'>).

Result (Returnvalue of last_transition_condition()): 'condition_a' (<class 'str'>)

Expectation (Returnvalue of last_transition_condition()): result = 'condition_a' (<class
< 'str'>)

B.1.12 Last Transition Condition was

Description
The Module shall have a method for checking if the given condition was the last transition condition.

51/

Unittest for state_machine

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <class 'bool’>).

Result (Returnvalue of last_transition_condition(condition_a)): True (<class 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_a)): result = True (<class
— 'bool'>)

Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is <class
"bool’>).

Result (Returnvalue of last_transition_condition(condition_c)): False (<class 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_c)): result = False (<class
< 'bool'>)

B.1.13 Previous State

Description
The Module shall have a method for getting the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least one returend state fits to the expecation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

52/

Unittest for state_machine

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Returnvalue of previous_state()): 'state_a' (<class 'str'>)

Expectation (Returnvalue of previous_state()): result = 'state_a' (<class 'str'>)

B.1.14 Previous State was

Description
The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <class 'bool'>).

Result (Returnvalue of previous_state_was(state_a)): True (<class 'bool'>)

Expectation (Returnvalue of previous_state_was(state_a)): result = True (<class 'bool'>)

Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <class 'bool">).

Result (Returnvalue of previous_state_was(state_b)): False (<class 'bool'>)

Expectation (Returnvalue of previous_state_was(state_b)): result = False (<class 'bool'>)
B.1.15 Previous State Duration

Description
The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

53/

Unittest for state_machine

Fitcriterion
At least one returned duration fits to the previous state duration (£ 0.05s).

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Waiting for 0.75s

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Return Value of previous_state_duration() is correct (Content 0.7510056495666504 in [0.7 ... 0.8] and
Type is <class 'float'>).

Result (Return Value of previous_state_duration()): 0.7510056495666504 (<class 'float'>)

Expectation (Return Value of previous_state_duration()): 0.7 <= result <= 0.8

B.1.16 State change callback for a defined transition and targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition_condition and target_state.

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion
Methods are called in the registration order after state change with all user given arguments for the defined transition
condition and targetstate and at least for one other condition not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

54/

Unittest for state_machine

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Increasing sequence number to 6 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, condition_a) identified by a

— sequence number): [1] (<class 'list'>)

Expectation (Execution of state machine callback (1) (state_b, condition_a) identified by a

— sequence number): result = [1] (<class 'list'>)
Result (Submitted value number 1): 1 (<class 'int'>)
Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number: Values
and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, condition_a) identified by a

— sequence number): [2] (<class 'list'>)

Expectation (Execution of state machine callback (2) (state_b, condition_a) identified by a

— sequence number): result = [2] (<class 'list'>)
Result (Submitted value number 1): 2 (<class 'int'>)
Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).
B.1.17 State change callback for a defined transition

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition_condition and all target_states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

55 /165

Unittest for state_machine

Fitcriterion
Methods are called in the registration order after state change with all user given arguments for the defined transition
condition and at least for one other transition condition not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Increasing sequence number to 2 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 4 caused by callback_execution
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (all_transitions, condition_b) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, condition_b) identified by

— a sequence number): [2, 5] (<class 'list'>)

Expectation (Execution of state machine callback (1) (all_transitions, condition_b)

— identified by a sequence number): result = [2, 5] (<class 'list'>)
Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)
Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).
Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

56 / 65

Unittest for state_machine

Result (Execution of state machine callback (2) (all_transitions, condition_b) identified by

— a sequence number): [3, 6] (<class 'list'>)

Expectation (Execution of state machine callback (2) (all_transitions, condition_b)

— identified by a sequence number): result = [3, 6] (<class 'list'>)
Result (Submitted value number 1): 3 (<class 'int'>)

Expectation (Submitted value number 1): result = 3 (<class 'int'>)
Submitted value number 1 is correct (Content 3 and Type is <class 'int'>).
Result (Submitted value number 2): 6 (<class 'int'>)

Expectation (Submitted value number 2): result = 6 (<class 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <class 'int'>).

B.1.18 State change callback for a defined targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments
for all transition_conditions and a defined target_state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion
Methods are called in the registration order after state change with the defined targetstate and at least for one other
targetstate not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

57/

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback 0 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, all_conditions) identified by a

— sequence number): [1, 5] (<class 'list'>)

Expectation (Execution of state machine callback (1) (state_b, all_conditions) identified by
— a sequence number): result = [1, 5] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence number: Values
and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, all_conditions) identified by a

— sequence number): [2, 6] (<class 'list'>)

Expectation (Execution of state machine callback (2) (state_b, all_conditions) identified by
— a sequence number): result = [2, 6] (<class 'list'>)

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).

Result (Submitted value number 2): 6 (<class 'int'>)

Expectation (Submitted value number 2): result = 6 (<class 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <class 'int'>).

Unittest for state_machine

B.1.19 State change callback for all kind of state changes

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

Reason for the implementation
Triggering state change actions for all transition conditions and targetstates.

Fitcriterion
Methods are called in the registration order after state change.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 5 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Increasing sequence number to 7 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 8 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 9 caused by callback_execution
Increasing sequence number to 10 caused by sequence progress
StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 11 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 12 caused by callback_execution

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

59/ 165

Unittest for state_machine

Result (Execution of state machine callback (1) (all_transitions, all_conditions) identified

— Dby a sequence number): [1, 4, 7, 10] (<class 'list'>)

Expectation (Execution of state machine callback (1) (all_transitions, all_conditions)
— identified by a sequence number): result = [1, 4, 7, 10] (<class 'list'>)
Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).
Result (Submitted value number 2): 4 (<class 'int'>)

Expectation (Submitted value number 2): result = 4 (<class 'int'>)

Submitted value number 2 is correct (Content 4 and Type is <class 'int'>).
Result (Submitted value number 3): 7 (<class 'int'>)

Expectation (Submitted value number 3): result = 7 (<class 'int'>)

Submitted value number 3 is correct (Content 7 and Type is <class 'int'>).
Result (Submitted value number 4): 10 (<class 'int'>)

Expectation (Submitted value number 4): result = 10 (<class 'int'>)

Submitted value number 4 is correct (Content 10 and Type is <class 'int'>).

Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, all_conditions) identified
— Dby a sequence number): [2, 5, 8, 11] (<class 'list'>)

Expectation (Execution of state machine callback (2) (all_transitions, all_conditions)
— identified by a sequence number): result = [2, 5, 8, 11] (<class 'list'>)

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).

Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Result (Submitted value number 3): 8 (<class 'int'>)

Expectation (Submitted value number 3): result = 8 (<class 'int'>)

Submitted value number 3 is correct (Content 8 and Type is <class 'int'>).

Result (Submitted value number 4): 11 (<class 'int'>)

Expectation (Submitted value number 4): result = 11 (<class 'int'>)

Submitted value number 4 is correct (Content 11 and Type is <class 'int'>).
B.1.20 Execution order of Callbacks

Description

The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation

User shall have the control about the execution order.

60/ 65

Unittest for state_machine

Fitcriterion
A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had
been regestered first.

Testresult
This test was passed with the state:

Callback execution order: Values and number of submitted values is correct. See detailed log for more

information.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback O - unittest.test.report_value

Executing callback 1 - unittest.test.report_value

Result (Callback execution order): ['specific callback', 'nonspecific callback'] (<class
-~ 'list'>)

Expectation (Callback execution order): result = ['specific callback', 'nonspecific

— callback'] (<class 'list'>)

Result (Submitted value number 1): 'specific callback' (<class 'str'>)

Expectation (Submitted value number 1): result = 'specific callback' (<class 'str'>)
Submitted value number 1 is correct (Content 'specific callback' and Type is <class 'str'>).
Result (Submitted value number 2): 'nonspecific callback' (<class 'str'>)

Expectation (Submitted value number 2): result = 'nonspecific callback' (<class 'str'>)

Submitted value number 2 is correct (Content 'nonspecific callback' and Type is <class
— 'str! >) o

C Test-Coverage

C.1 state_machine

The line coverage for state_machine was 100.0%
The branch coverage for state_machine was 100.0%

C.1.1 statemachine.__init__.py

The line coverage for state machine.__init__.py was 100.0%
The branch coverage for state_machine.__init__.py was 100.0%
1 #!/usr/bin/env python
> # —*— coding: utf—8 —%—
s #

4

61/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

51

52

53

54

55

56

57

58

59

60

Unittest for state_machine

state_machine (State Machine)

x Author:x
x Dirk Alders <sudo—dirk@mount—mockery.de>
**% Description :®x%
This Module helps implementing state machines.
**% Submodules :*x
* :class: state_machine.state_machine’
#x Unittest :%*
See also the :download: unittest <state_machine/_testresults_/unittest.pdf>" documentation.

**x Module Documentation:xx

__DEPENDENCIES_. = []

import logging
import time

logger_name = 'STATE_MACHINE'

logger = logging .getlLogger(logger_name)

__INTERPRETER_. = (2, 3)

""" The supported Interpreter —Versions”""”

__DESCRIPTION__. = """ This Module helps implementing state machines.”""

""" The Module description

class state_machine(object):

nmoon

:param default_state: The default state which is set on initialisation.

:param log_lvl: The log level , this Module logs to (see Loging—Levels of Module :mod: " logging

)

note:: Additional keyword parameters well be stored as varibles of the instance (e.g. to
give variables or methods for transition condition calculation).

A state machine class can be created by deriving it from this class. The transitions are
defined by overriding the variable “TRANSITIONS .

This Variable is a dictionary , where the key is the start—state and the content is a tuple or

list of transitions. Each transition is a tuple or list
including the following information: (condition—method (str), transition—time (number),
target_state (str)).

note:: The condition—method needs to be implemented as part of the new class.

note:: It is usefull to define the states as variables of this class.

x Example : %

62/ [65]

61

62

63

64

65

66

67

68

69

70

71

72

73

74

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Unittest for state_machine

literalinclude :: ../ examples/example.py

literalinclude :: ../ examples/example.log
TRANSITIONS = {}
LOG_PREFIX = 'StateMachine:'

def __init__(self, default_state, log_lvl , xxkwargs):
self. __state__ = None
self.__last_transition_condition__ = None
self.__conditions_start_time__ = {}
self. __state_change_callbacks__ = {}
self.__log_lvl__ = log_lvl
self.__set_state__(default_state, '__init_-_")
self. __callback_id__ =0

for key in kwargs:
setattr(self, key, kwargs.get(key))

def register_state_change_callback(self, state, condition,

ITRIEN)

:param state: The target state. The callback will
changes to this state. None means all states.
:type state: str

:param condition: The transition condition. The callback will

callback ,

be executed ,

condition is responsible for the state change. None means all

:type condition: str
:param callback: The callback to be executed.

xargs ,

be executed ,
conditions.

note:: Additional arguments and keyword parameters are supported.

parameters will be used as arguments and parameters for

This methods allows to register callbacks which will

[TRTED)

if state not in self.__state_change_callbacks__:
self. __state_change_callbacks__[state] = {}

if condition not in self.__state_change_callbacks__[state]:
self. __state_change_callbacks__[state][condition] = []

self. __state_change_callbacks__[state][condition].append((self.__callback_id__,

args, kwargs))
self. __callback_.id__ 4+=1

def this_state(self):

moon

:return: The current state.

This method returns the current state of the state machine.

ITRTET)

return self.__state__
def this_state_is(self, state):

:param state: The state to be checked
:type state: str

:return: True if the given state is currently active,

:rtype: bool

This methods returns the boolean information if the state machine

given state.

"o

return self.__state__ — state

def this_state_duration(self):

else

False.

is

the callback execution.

currently

xxkwargs):

if this

be executed on state changes.

if the state machine

These arguments and

callback ,

in

the

63/ [65]

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Unittest for state_machine

[TRIEN)

:return: The time how long the current state is active.
irtype: float

This method returns the time how long the current state is active.

noon

return time.time() — self.__time_stamp_state_change__

def last_transition_condition(self):
:return: The last transition condition.
irtype: str

This method returns the last transition condition.

return self.__last_transition_condition__

def last_transition_condition_was(self, condition):
:param condition: The condition to be checked
:type condition: str
:return: True if the given condition was the last transition condition, else False.
:rtype: bool

This methods returns the boolean information if the last transition condition is
equivalent to the given condition.

return self.__last_transition_condition__ = condition

def previous_state(self):

noon

:return: The previous state.
crtype: str

This method returns the previous state of the state machine.

return self.__prev_state__

def previous_state_was(self, state):
:param state: The state to be checked
:type state: str
:return: True if the given state was previously active, else False.
:rtype: bool

This methods returns the boolean information if the state machine was previously in
given state.

return self.__prev_state_._ = state

def previous_state_duration(self):

:return: The time how long the previous state was active.
crtype: float

This method returns the time how long the previous state was active.

[TRIEN)

return self.__prev_state_dt__

the

64 / [65]

190

191

192

193

194

196

197

198

199

219

Unittest for state_machine

def __set_state__(self, target_state, condition):
logger.log(self.__log_Ivl__, "%s State change (%s): %s —> %s”, self.LOG_PREFIX, repr
condition), repr(self.__state__), repr(target_state))
timestamp = time.time ()
self.__prev_state__ = self.__state__
if self.__prev_state__ is None:
self. __prev_state_dt_-_ = 0.
else:
self. __prev_state_dt__ = timestamp — self.__time_stamp_state_change__
self.__state__ = target_state
self. __last_transition_condition__ = condition
self.__time_stamp_state_change__ = timestamp
self.__conditions_start_time__ = {}
TODO: Execute callbacks in the same order as registration (by sorting after

identification)

(

this_state_change_callbacks = self.__state_change_callbacks__.get(None, {}).get(None, [])

this_state_change_callbacks.extend(self.__state_change_callbacks__.get(target_state, {}).
get(None, []))

this_state_change_callbacks.extend(self.__state_change_callbacks__.get(None, {}).get(
condition, []))

this_state_change_callbacks.extend(self.__state_change_callbacks__.get(target_state, {}).
get(condition, []))

Callback execution

this_state_change_callbacks.sort()

for cid, callback, args, kwargs in this_state_change_callbacks:
logger.debug('Executing callback %d — %s.%s', cid, callback.__module__, callback
__name__)
callback (xargs, *xkwargs)
def work(self):
This Method needs to be executed cyclicly to enable the state machine.
tm = time.time()
transitions = self .TRANSITIONS. get(self.this_state())
if transitions is not None:
active_transitions = []
cnt =0
for method_name, transition_delay , target_state in transitions:
method = getattr(self, method_name)
if method():
if method_name not in self.__conditions_start_time__:
self.__conditions_start_time__[method_name] = tm
if tm — self.__conditions_start_time__[method_name] >= transition_delay:
active_transitions .append((transition_delay — tm + self.

__conditions_start_time__[method_name], cnt, target_state, method_name))
else:
self.__conditions_start_time__[method_name] = tm
cnt =1
if len(active_transitions) > 0:
active_transitions.sort ()

self. __set_state__(active_transitions[0][2], active_transitions [0][3])

65 / [65]

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 2.7.17 (final)
	Test-Statistic for testrun with python 3.6.9 (final)
	Coverage Statistic

	Tested Requirements
	Module Initialisation
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments

	Transition Changes
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation

	Module Interface
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration

	Transition Callbacks
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Trace for testrun with python 2.7.17 (final)
	Tests with status Info (20)
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Trace for testrun with python 3.6.9 (final)
	Tests with status Info (20)
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Test-Coverage
	 state_machine
	 state_machine.__init__.py

