Unittest for state_machine

August 14, 2025

Unittest for state_machine

Contents
(1 Test Information| 3
1.1 _Test Candidate Information| 3
L2 Unittest Informationl 3
1.3 Test System Information| 3
[2_Statistid 3
[2.1 Test-Statistic for testrun with python 3.13.5 (final)l 3
2.2 Coverage Statistic] L 4
[3 Tested Requirements| 5
3.1 Module Initialisationl 5
B.1.1 Default Statel 5
3.1.2 Default last Transition Condtion| 5
B.13 Default Previous Statel 6
13.1.4 Additional Keyword Arguments|. 6
3.2 Transition Changes| 7
B.2.1 Transitiondefinition and -flowl 7
3.2.2 Transitiontiming| e 8
13.2.3 Transitionpriorisation| L 9
B3 Module Interfacel. 9
B31 ThisStatel 9
3.3.2 ThisState s, 10
3.3.3 This State Durationl o 10
B34 Tast Transition Conditionl 11
335 Last Transition Condition wasl 12
3.3.6 Previous Statel 12
B37 Previous Statewas| 13
B.3.8 Previous State Durationl. 13
B4 Transition Callbacks 14
[3.4.1 State change callback for a defined transition and targetstate]. 14
13.4.2 State change callback for a defined transition| 15
13.4.3 State change callback for a defined targetstate] 15
|3.4.4 State change callback for all kind of state changes| 17
B.45 Execution order of Callbacks| 18

Unittest for state_machine

[A" Trace for testrun with python 3.13.5 (final)| 19
[A.1 Tests with status Info (20)] 19
ATT REQ-0005] . - . o o o 19
AT2REQ-0006] - - - - o oo e e 19
AT3 T REQ-O007] - -« o o o o o e 19
ATA REQO008] . - . o oo oo oo e e 20

5 S00I7] . 20

AT6 _REQOOIB] . . o o oo e e e e e 21

1.7 0019 | . . e 22

1.8 -0009 | . . L 23

ATO REQ-O0TO] o o 23
[ATTI0 REQ-00TT] o o 24
ATIT REQ-00TIZ] o o 24
ATI2 REQ-O0I3] o oot 24
ATI3 REQOOIA] . . . o oot oo 25

14 0015 | L e 25

1.15 0016 | . .. 26
ATT6 REQ-000T] o ot 26
ATI7REQ-000Z] o o 27
ATI8REQ-0003] . - - -« o o o e e e 28
ATI9 REQO00A] oo oo 29
AT20 REQ-0020] .« - o oo oo e e e 31
[B_Test-Coverage] 32
B.1 statemachine | L 32
IB.1.1 statemachine.__init__.py | e 32

2 /59

Unittest for state_machine

1 Test Information

1.1 Test Candidate Information

This Module helps implementing state machines.

Library Information

Name
State

Supported Interpreters

Version

state_machine

Released

python3
6bad7253e81€9a0edcd7690c51c05d3d

Dependencies

1.2 Unittest Information

Unittest Information

Version
Testruns with

e6f5e3bbcb9ae84eee10254379ddd104
python 3.13.5 (final)

1.3 Test System Information

System Information

Architecture 64bit
Distribution Debian GNU/Linux 13 trixie
Hostname ahorn
Kernel 6.12.38+deb13-amd64 (#1 SMP PREEMPT_DYNAMIC Debian 6.12.38-1 (2025-07-16))
Machine x86_64
Path /home/dirk/work/unittest_collection /state_machine
System Linux
Username dirk
2 Statistic
2.1
Number of tests 20
Number of successfull tests 20

Number of possibly failed tests 0

Number of failed tests

0

Executionlevel

Time consumption

Full Test (all defined tests)
1.651s

3/ 36

Unittest for state_machine

2.2 Coverage Statistic

Module- or Filename Line-Coverage Branch-Coverage

state_machine 100.0% 100.0%
state machine.__init__.py 100.0%

4/ 136

Unittest for state_machine

3 Tested Requirements

3.1 Module Initialisation
3.1.1 Default State

Description
The state machine shall start in the state, given while module initialisation.

Reason for the implementation
Creation of a defined state after initialisation.

Fitcriterion
State machine is in the initial state after initialisation.

Testresult
This test was passed with the state: . See also full trace in section [A.1.7]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:18,453
Finished-Time: 2025-08-14 22:47:18,454
Time-Consumption 0.000s
Testsummary:
Info Initialising the state machine with state_c

State after initialisation is correct (Content 'state_c' and Type is <class 'str'>).

3.1.2 Default Last Transition Condtion

Description
The state machine shall return the string __init__ for last transition condition after initalisation.

Reason for the implementation
Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is __init__ after initialisation.

Testresult
This test was passed with the state: . See also full trace in section [A.1.2]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work /unittest_collection /state_machine/unittest/src/report/__init__.py (331)

5/

Unittest for state_machine

Start-Time: 2025-08-14 22:47:18,454

Finished-Time: 2025-08-14 22:47:18,454
Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c

Last transition condition after initialisation is correct (Content '__init__" and Type is <class
'str’>).

3.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation
Creation of a defined state after initialisation.

Fitcriterion
The previous state is None after initialisation.

Testresult
This test was passed with the state: . See also full trace in section [A.1.3]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:18,454
Finished-Time: 2025-08-14 22:47:18,454
Time-Consumption 0.000s
Testsummary:
Info Initialising the state machine with state_c

Last state after initialisation is correct (Content None and Type is <class 'NoneType'>).

3.1.4 Additional Keyword Arguments

Description
The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation
Store further information (e.g. for calculation of the transition conditions).

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

6/ 36

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [A.1.4]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:18,454

Finished-Time: 2025-08-14 22:47:18,455

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state_c

Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <class
'int'>).

Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2' and Type is
<class 'str'>).

Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is
<class 'bool'>).

Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": "two'}
and Type is <class 'dict’>).

3.2 Transition Changes

3.2.1 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation

Definition of the transitions for a state machine.

Fitcriterion

The order of at least three state changes is correct.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.5]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /state_machine/unittest /src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:18,455

Finished-Time: 2025-08-14 22:47:18,456

Time-Consumption 0.001s

Testsummary:

Info Initialising state machine with state_a

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

7/ 36

Unittest for state_machine

Info Work routine executed the 1st time to do the state change. Defined Transitions are:
True—state_b (0.0s); False—state_c (0.0s)
State after 1st execution of work method is correct (Content 'state_b’ and Type is <class
'str'>).

Info Work routine executed the 2nd time to do the state change. Defined Transitions are:
False—state_a (0.0s); True—state_c (0.0s)
State after 2nd execution of work method is correct (Content 'state ¢’ and Type is <class

'str'>).

Info Work)routine executed the 3rd time with no effect. No Transitions starting from state_c (dead
end)
State after 3rd execution of work method is correct (Content 'state.c’ and Type is <class
'str’>).

3.2.2 Transitiontiming

Description
The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

Reason for the implementation
Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion
The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (£0.05s).

Testresult
This test was passed with the state: . See also full trace in section [A.1.6]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection /state_machine/unittest /src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:18,456
Finished-Time: 2025-08-14 22:47:18,833
Time-Consumption 0.377s
Testsummary:
Info Initialising state machine with state_a
Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).
Info Waiting for 0.160s or state change
State after 1st cycle is correct (Content 'state_b’ and Type is <class 'str'>).
Transition time after 1st cycle is correct (Content 0.1504039764404297 in [0.145 ... 0.155] and
Type is <class 'float’>).
Info Waiting for 0.235s or state change

State after 2nd cycle is correct (Content 'state_c’ and Type is <class 'str'>).
Transition time after 2nd cycle is correct (Content 0.1502220630645752 in [0.145 ... 0.155]

and Type is <class 'float'>).
Previous state duration is correct (Content 0.22541022300720215 in [0.21999999999999997 ...

0.22999999999999998] and Type is <class 'float'>).

8/

Unittest for state_machine

3.2.3 Transitionpriorisation

Description

The state machine shall use the first active transition. If multiple transition are active, the transition with the highest

overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion

At least one transition with at least two active conditions results in the expected state change.

Testresult
This test was passed with the state: . See also full trace in section [A.1.7]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work /unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:18,833
Finished-Time: 2025-08-14 22:47:19,078
Time-Consumption 0.245s
Testsummary:
Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to
state_c after 0.150s
Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).
Info Waiting for 0.300s or state change

State after 1st cycle is correct (Content 'state_c’ and Type is <class 'str'>).

3.3 Module Interface

3.3.1 This State

Description

The Module shall have a method for getting the current state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: . See also full trace in section [A.1.8]

9/ 36

Unittest for state_machine

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:19,078

Finished-Time: 2025-08-14 22:47:19,080

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state_c

Returnvalue of this_state() is correct (Content 'state_c’ and Type is <class 'str'>).

3.3.2 This State is

Description
The Module shall have a method for checking if the given state is currently active.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state: . See also full trace in section [A.1.9]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection /state_machine/unittest /src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:19,080
Finished-Time: 2025-08-14 22:47:19,082
Time-Consumption 0.001s
Testsummary:
Info Initialising the state machine with state_c

Returnvalue of this_state_is(state_c) is correct (Content True and Type is <class 'bool’>).
Returnvalue of this_state_is(state_b) is correct (Content False and Type is <class 'bool">).

3.3.3 This State Duration

Description
The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation
Comfortable user interface.

10/ 34

Fitcriterion

Unittest for state_machine

At least one returned duration fits to the current state duration (£ 0.05s).

Testresult

This test was passed with the state:

. See also full trace in section [A.1.10]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:19,082

Finished-Time: 2025-08-14 22:47:19,334

Time-Consumption 0.252s

Testsummary:

Info Running state machine test sequence.

Return Value of this_state_duration() is correct (Content 0.25122594833374023 in [0.2 ... 0.3]
and Type is <class 'float'>).

3.3.4 Last Transition Condition

Description

The Module shall have a method for getting the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned transition condition fits to the expectation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.11]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:19,335

Finished-Time: 2025-08-14 22:47:19,336

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.

Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <class
'str'>).

11 /4

Unittest for state_machine

3.3.5 Last Transition Condition was

Description
The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state: . See also full trace in section [A.1.12]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/ __init__.py (331)
Start-Time: 2025-08-14 22:47:19,337
Finished-Time: 2025-08-14 22:47:19,339
Time-Consumption 0.002s
Testsummary:
Info Running state machine test sequence.

Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <class
'bool’>).

Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is
<class 'bool'>).

3.3.6 Previous State

Description
The Module shall have a method for getting the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least one returend state fits to the expecation.

Testresult

This test was passed with the state: . See also full trace in section |A.1.13]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection /state_machine/unittest /src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:19,340

12/ B4

Unittest for state_machine

Finished-Time: 2025-08-14 22:47:19,341
Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <class 'str'>).

3.3.7 Previous State was

Description

The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state: . See also full trace in section |A.1.14]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:19,342
Finished-Time: 2025-08-14 22:47:19,344
Time-Consumption 0.002s
Testsummary:
Info Running state machine test sequence.

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <class 'bool’>).
Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <class
'bool’>).

3.3.8 Previous State Duration

Description
The Module shall have a method for getting active time for the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (£ 0.05s).

13/ B4

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [A.1.15]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:19,345

Finished-Time: 2025-08-14 22:47:20,097

Time-Consumption 0.753s

Testsummary:

Info Running state machine test sequence.

Return Value of previous_state_duration() is correct (Content 0.7510614395141602 in [0.7 ...
0.8] and Type is <class 'float’>).

3.4 Transition Callbacks

3.4.1 State change callback for a defined transition and targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition_condition and target_state.

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and targetstate and at least for one other condition not.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.16]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /state_machine/unittest /src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:20,098

Finished-Time: 2025-08-14 22:47:20,102

Time-Consumption 0.004s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

14 /B4

Unittest for state_machine

3.4.2 State change callback for a defined transition

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition_condition and all target_states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion
Methods are called in the registration order after state change with all user given arguments for the defined transition
condition and at least for one other transition condition not.

Testresult
This test was passed with the state: . See also full trace in section |A.1.17]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:20,102
Finished-Time: 2025-08-14 22:47:20,104
Time-Consumption 0.002s
Testsummary:
Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all_transitions, condition_b) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

3.4.3 State change callback for a defined targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transition_conditions and a defined target_state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion
Methods are called in the registration order after state change with the defined targetstate and at least for one other
targetstate not.

15 /B4

Unittest for state_machine

Testresult
This test was passed with the state: Success. See also full trace in section [A.1.18]

16 / Bq

Unittest for state_machine

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:20,104

Finished-Time: 2025-08-14 22:47:20,106

Time-Consumption 0.002s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.

3.4.4 State change callback for all kind of state changes

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.19]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:20,107

Finished-Time: 2025-08-14 22:47:20,109

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

17/ B4

Unittest for state_machine

3.4.5 Execution order of Callbacks

Description

The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation

User shall have the control about the execution order.

Fitcriterion

A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had

been regestered first.

Testresult
This test was passed with the state: . See also full trace in section [A.1.20]
Testrun: python 3.13.5 (final)
Caller: /home/dirk/work /unittest_collection /state_machine/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-14 22:47:20,110
Finished-Time: 2025-08-14 22:47:20,111

Time-Consumption

0.001s

Testsummary:

Callback execution order: Values and number of submitted values is correct. See detailed log
for more information.

18 /34|

Unittest for state_machine

A Trace for testrun with python 3.13.5 (final)

A.1 Tests with status Info (20)
A.1.1 REQ-0005

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

State after initialisation is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after initialisation): 'state_c' (<class 'str'>)

Expectation (State after initialisation): result = 'state_c' (<class 'str'>)

A.1.2 REQ-0006

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last transition condition after initialisation is correct (Content '__init__" and Type is <class 'str'>).

Result (Last transition condition after initialisation): '__init__' (<class 'str'>)

Expectation (Last transition condition after initialisation): result = '__init__' (<class
- 'str'>)

A.1.3 REQ-0007

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last state after initialisation is correct (Content None and Type is <class 'NoneType'>).

Result (Last state after initialisation): None (<class 'NoneType’>)

Expectation (Last state after initialisation): result = None (<class 'NoneType'>)

19/

Unittest for state_machine

A.1.4 REQ-0008

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <class 'int'>).

Result (Keyword argument kw_arg no_1 stored in state_machine): 1 (<class 'int'>)

Expectation (Keyword argument kw_arg no_1 stored in state_machine): result = 1 (<class 'int'>)

Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2" and Type is <class 'str'>).

Result (Keyword argument kw_arg no_2 stored in state_machine): '2' (<class 'str'>)

Expectation (Keyword argument kw_arg no_2 stored in state_machine): result = '2' (<class
< 'str'>)

Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is <class
'bool’>).

Result (Keyword argument kw_arg _no_3 stored in state_machine): True (<class 'bool'>)

Expectation (Keyword argument kw_arg _no_3 stored in state_machine): result = True (<class
— 'bool'>)

Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": 'two'} and Type
is <class 'dict'>).

Result (Keyword argument kw_arg_no_4 stored in state_machine): { '1': 1, '2': 'two' } (<class
— 'diCt'>)

Expectation (Keyword argument kw_arg no_4 stored in state_machine): result = { '1': 1, '2':
— 'two' } (<class 'dict'>)

A.1.5 REQ-0017

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

20/ 39|

Unittest for state_machine

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Work routine executed the 1st time to do the state change. Defined Transitions are: True—state_b (0.0s);
False—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

State after 1st execution of work method is correct (Content 'state_b’ and Type is <class 'str'>).

Result (State after 1st execution of work method): 'state_b' (<class 'str'>)

Expectation (State after 1st execution of work method): result = 'state_b' (<class 'str'>)

Info Work routine executed the 2nd time to do the state change. Defined Transitions are: False—sstate_a (0.0s);
True—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd execution of work method is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 2nd execution of work method): 'state_c' (<class 'str'>)

Expectation (State after 2nd execution of work method): result = 'state_c' (<class 'str'>)

Info Work routine executed the 3rd time with no effect. No Transitions starting from state_c (dead end)

State after 3rd execution of work method is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 3rd execution of work method): 'state_c' (<class 'str'>)

Expectation (State after 3rd execution of work method): result = 'state_c' (<class 'str'>)

A.1.6 REQ-0018

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Waiting for 0.160s or state change

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

21/ 36

Unittest for state_machine

State after 1st cycle is correct (Content 'state_b’ and Type is <class 'str'>).

Result (State after 1st cycle): 'state_b' (<class 'str'>)

Expectation (State after 1st cycle): result = 'state_b' (<class 'str'>)

Transition time after 1st cycle is correct (Content 0.1504039764404297 in [0.145 ... 0.155] and Type is
<class 'float’>).

Result (Transition time after 1st cycle): 0.1504039764404297 (<class 'float'>)
Expectation (Transition time after 1st cycle): 0.145 <= result <= 0.155

Info Waiting for 0.235s or state change

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd cycle is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 2nd cycle): 'state_c' (<class 'str'>)

Expectation (State after 2nd cycle): result = 'state_c' (<class 'str'>)

Transition time after 2nd cycle is correct (Content 0.1502220630645752 in [0.145 ... 0.155] and Type is
<class 'float’>).

Result (Transition time after 2nd cycle): 0.1502220630645752 (<class 'float'>)
Expectation (Transition time after 2nd cycle): 0.145 <= result <= 0.155

Previous state duration is correct (Content 0.22541022300720215 in [0.21999999999999997
0.22999999999999998] and Type is <class 'float’>).

Result (Previous state duration): 0.22541022300720215 (<class 'float'>)
Expectation (Previous state duration): 0.21999999999999997 <= result <= 0.22999999999999998

A.1.7 REQ-0019

Testresult
This test was passed with the state:

Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to state_c after
0.150s

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

22/

Unittest for state_machine

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Waiting for 0.300s or state change

Executing method work after 0.000s
Executing method work after 0.060s
Executing method work after 0.121s
Executing method work after 0.182s

StateMachine: State change ('condition_true'): 'state_a' -> 'state_c'

State after 1st cycle is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 1st cycle): 'state_c' (<class 'str'>)

Expectation (State after 1st cycle): result = 'state_c' (<class 'str'>)

A.1.8 REQ-0009

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state() is correct (Content 'state_c’ and Type is <class 'str'>).

Result (Returnvalue of this_state()): 'state_c' (<class 'str'>)

Expectation (Returnvalue of this_state()): result = 'state_c' (<class 'str'>)

A.1.9 REQ-0010

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state_is(state_c) is correct (Content True and Type is <class 'bool">).

Result (Returnvalue of this_state_is(state_c)): True (<class 'bool'>)

Expectation (Returnvalue of this_state_is(state_c)): result = True (<class 'bool'>)

Returnvalue of this_state_is(state_b) is correct (Content False and Type is <class 'bool'>).

Result (Returnvalue of this_state_is(state_b)): False (<class 'bool'>)

Expectation (Returnvalue of this_state_is(state_b)): result = False (<class 'bool'>)

23/ 34}

Unittest for state_machine

A.1.10 REQ-0011

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.25s

Return Value of this_state_duration() is correct (Content 0.25122594833374023 in [0.2 ... 0.3] and Type
is <class 'float’>).

Result (Return Value of this_state_duration()): 0.25122594833374023 (<class 'float'>)

Expectation (Return Value of this_state_duration()): 0.2 <= result <= 0.3

A.1.11 REQ-0012

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <class 'str'>).

Result (Returnvalue of last_transition_condition()): 'condition_a' (<class 'str'>)

Expectation (Returnvalue of last_transition_condition()): result = 'condition_a' (<class
- 'str'>)

A.1.12 REQ-0013

Testresult

This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <class 'bool’>).

Result (Returnvalue of last_transition_condition(condition_a)): True (<class 'bool'>)

24/

Unittest for state_machine

Expectation (Returnvalue of last_transition_condition(condition_a)): result = True (<class
< 'bool'>)

Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is <class
'bool’>).

Result (Returnvalue of last_transition_condition(condition_c)): False (<class 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_c)): result = False (<class
< 'bool'>)

A.1.13 REQ-0014

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Returnvalue of previous_state()): 'state_a' (<class 'str'>)

Expectation (Returnvalue of previous_state()): result = 'state_a' (<class 'str'>)

A.1.14 REQ-0015

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <class 'bool'>).

Result (Returnvalue of previous_state_was(state_a)): True (<class 'bool'>)

Expectation (Returnvalue of previous_state_was(state_a)): result = True (<class 'bool'>)

Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <class 'bool >).

Result (Returnvalue of previous_state_was(state_b)): False (<class 'bool'>)

Expectation (Returnvalue of previous_state_was(state_b)): result = False (<class 'bool'>)

25/

Unittest for state_machine

A.1.15 REQ-0016

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Waiting for 0.75s

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Return Value of previous_state_duration() is correct (Content 0.7510614395141602 in [0.7 ... 0.8] and
Type is <class 'float’>).

Result (Return Value of previous_state_duration()): 0.7510614395141602 (<class 'float'>)

Expectation (Return Value of previous_state_duration()): 0.7 <= result <= 0.8

A.1.16 REQ-0001

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Increasing sequence number to 6 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number: Values
and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, condition_a) identified by a

— sequence number): [1] (<class 'list'>)

26 / 39]

Unittest for state_machine

Expectation (Execution of state machine callback (1) (state_b, condition_a) identified by a
— sequence number): result = [1] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number: Values
and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, condition_a) identified by a

- sequence number): [2] (<class 'list'>)

Expectation (Execution of state machine callback (2) (state_b, condition_a) identified by a
— sequence number): result = [2] (<class 'list'>)

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).
A.1.17 REQ-0002

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Increasing sequence number to 2 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback 0 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 4 caused by callback_execution
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (all_transitions, condition_b) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, condition_b) identified by a
— sequence number): [2, 5] (<class 'list'>)

27/ 136

Unittest for state_machine

Expectation (Execution of state machine callback (1) (all_transitions, condition_b) identified

< by a sequence number): result = [2, 5] (<class 'list'>)

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)
Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).
Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, condition_b) identified by a
— sequence number): [3, 6] (<class 'list'>)

Expectation (Execution of state machine callback (2) (all_transitions, condition_b) identified

— by a sequence number): result = [3, 6] (<class 'list'>)

Result (Submitted value number 1): 3 (<class 'int'>)

Expectation (Submitted value number 1): result = 3 (<class 'int'>)
Submitted value number 1 is correct (Content 3 and Type is <class 'int'>).
Result (Submitted value number 2): 6 (<class 'int'>)

Expectation (Submitted value number 2): result = 6 (<class 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <class 'int'>).

A.1.18 REQ-0003

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback 0 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

28/ 39|

Unittest for state_machine

Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, all_conditions) identified by a

— sequence number): [1, 5] (<class 'list'>)

Expectation (Execution of state machine callback (1) (state_b, all_conditions) identified by a

— sequence number): result = [1, 5] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)
Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).
Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, all_conditions) identified by a

— sequence number): [2, 6] (<class 'list'>)

Expectation (Execution of state machine callback (2) (state_b, all_conditions) identified by a

- sequence number): result = [2, 6] (<class 'list'>)

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)
Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).
Result (Submitted value number 2): 6 (<class 'int'>)

Expectation (Submitted value number 2): result = 6 (<class 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <class 'int'>).

A.1.19 REQ-0004

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

29/ 39|

Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 5 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Increasing sequence number to 7 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 8 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 9 caused by callback_execution
Increasing sequence number to 10 caused by sequence progress
StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 11 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 12 caused by callback_execution

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, all_conditions) identified
— by a sequence number): [1, 4, 7, 10] (<class 'list'>)

Expectation (Execution of state machine callback (1) (all_transitions, all_conditions)
— identified by a sequence number): result = [1, 4, 7, 10] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 2): 4 (<class 'int'>)

Expectation (Submitted value number 2): result = 4 (<class 'int'>)

Submitted value number 2 is correct (Content 4 and Type is <class 'int'>).

Result (Submitted value number 3): 7 (<class 'int'>)

Expectation (Submitted value number 3): result = 7 (<class 'int'>)

Submitted value number 3 is correct (Content 7 and Type is <class 'int'>).

Result (Submitted value number 4): 10 (<class 'int'>)

Expectation (Submitted value number 4): result = 10 (<class 'int'>)

Submitted value number 4 is correct (Content 10 and Type is <class 'int'>).

Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, all_conditions) identified

— by a sequence number): [2, 5, 8, 11] (<class 'list'>)

£

Unittest for state_machine

Expectation (Execution of state machine callback (2) (all_transitions, all_conditions)

— identified by a sequence number): result = [2, 5, 8, 11] (<class 'list'>)
Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)
Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).
Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)
Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).
Result (Submitted value number 3): 8 (<class 'int'>)

Expectation (Submitted value number 3): result = 8 (<class 'int'>)
Submitted value number 3 is correct (Content 8 and Type is <class 'int'>).
Result (Submitted value number 4): 11 (<class 'int'>)

Expectation (Submitted value number 4): result = 11 (<class 'int'>)

Submitted value number 4 is correct (Content 11 and Type is <class 'int'>).

A.1.20 REQ-0020

Testresult
This test was passed with the state:

Callback execution order: Values and number of submitted values is correct. See detailed log for more
information.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback 1 - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

Result (Callback execution order): ['specific callback for reaching state_b', 'nonspecific

— callback', 'specific callback for reaching state_a', 'nonspecific callback'] (<class

- 'list'>)

Expectation (Callback execution order): result = ['specific callback for reaching state_b',
< 'nonspecific callback', 'specific callback for reaching state_a', 'nonspecific callback']
— (<class 'list'>)

Result (Submitted value number 1): 'specific callback for reaching state_b' (<class 'str'>)

Expectation (Submitted value number 1): result = 'specific callback for reaching state_b'
— (<class 'str'>)

Submitted value number 1 is correct (Content 'specific callback for reaching state_b' and Type

— 1is <class 'str'>).
Result (Submitted value number 2): 'nonspecific callback' (<class 'str'>)

Expectation (Submitted value number 2): result = 'nonspecific callback' (<class 'str'>)

31/ 36

1

2

Unittest for state_machine

Submitted value number 2 is correct (Content 'nonspecific callback' and Type is <class
< 'str'>).
Result (Submitted value number 3): 'specific callback for reaching state_a' (<class 'str'>)

Expectation (Submitted value number 3): result = 'specific callback for reaching state_a'

— (<class 'str'>)

Submitted value number 3 is correct (Content 'specific callback for reaching state_a' and Type

— is <class 'str'>).
Result (Submitted value number 4): 'nonspecific callback' (<class 'str'>)
Expectation (Submitted value number 4): result = 'nonspecific callback' (<class 'str'>)

Submitted value number 4 is correct (Content 'nonspecific callback' and Type is <class

< 'str'>).
B Test-Coverage

B.1 state_machine

The line coverage for state machine was 100.0%
The branch coverage for state machine was 100.0%

B.1.1 statemachine.__init__.py

The line coverage for state_ machine.__init__.py was 100.0%
The branch coverage for state machine.__init__.py was 100.0%

#!/usr/bin/env python
—*— coding: utf—8 —x—

s #

4 unun

5

6

state_machine (State Machine)

*x Author % *
x* Dirk Alders <sudo—dirk@mount—mockery.de>
#x Description :xx%
This Module helps implementing state machines.

** Submodules:*x*

8 * :class: state machine.state machine”

*xUnittest ixx
See also the :download: unittest <state machine/ testresults /unittest.pdf>" documentation.

*xModule Documentation :xx

__DEPENDENCIES = []

32/ 34

54

55

Unittest for state_machine

import logging
import time

try:
from config import APP_NAME as ROOT_ LOGGER NAME
except ImportError:
ROOT LOGGER NAME = 'root'
logger = logging .getLogger (ROOT_LOGGER NAME) . getChild (__name_)

__INTERPRETER__ = (3,)
"""The supported Interpreter—Versions"""
DESCRIPTION = """This Module helps implementing state machines."""

"""The Module description"""

class state machine(object):
nuu

:param default state: The default state which is set on initialisation.

:param log Ivl: The log level, this Module logs to (see Loging—Levels of Module

)

note:: Additional keyword parameters well be stored as varibles of the instance

give variables or methods for transition condition calculation).

A state machine class can be created by deriving it from this class. The transitions are

defined by overriding the variable “TRANSITIONS .

This Variable is a dictionary , where the key is the start—state and the content

list of transitions. Each transition is a tuple or list

including the following information: (condition—method (str), transition—time (number),

target state (str)).

note:: The condition—method needs to be implemented as part of the new class.

note:: It is usefull to define the states as variables of this class.

*x Example :x %
literalinclude :: state machine/ examples /example.py

literalinclude :: state _machine/ examples /example.log
nnn
TRANSITIONS = {}
LOG_PREFIX = 'StateMachine: '

def _ init (self, default state, log Ivl, xxkwargs):
self. state = None
self. _last_transition_condition_ _ = None
self. conditions start time = {}
self. state change callbacks_ = {}
self. log Ivl = log lvl
self. set state (default state, ' init ')
self. callback_id =0

for key in kwargs:
setattr(self, key, kwargs.get(key))

def register state change callback(self, state, condition, callback,6 =xargs,

*xxkwargs) :

(e.g.

:mod: " logging

to

is a tuple or

33/ 34

83

84

85

86

93

9

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

113

114

115

116

117

118

119

128

129

130

131

132

133

134

135

136

137

138

Unittest for state_machine

:param state: The target state. The callback will

changes to this state. None means all states.

:type state: str

:param condition: The transition condition.
condition is responsible for the state change.

:type condition: str

:param callback: The callback to be executed.

be executed,

The callback will

None means all conditions.

be executed,

note :: Additional arguments and keyword parameters are supported.

parameters will be used as arguments and parameters for

This methods allows to register callbacks which will

if state not in self. state change callbacks

self. state change callbacks [state] = {}

if condition not in self. state change callbacks _[state]:

self. state change callbacks__ [state][condition] = []

self. state change callbacks [state][condition].append((self. callback id

args, kwargs))
self. _callback_id__ 4=1

def this state(self):

:return: The current state.

This method returns the current state of the state machine.

return self. state

def this state is(self, state):
nmnn

:param state: The state to be checked

itype state: str
creturn: True if the given state is
irtype: bool

This methods returns the boolean information if the state machine

given state.
nmonn

return self. state == state

def this_ state duration(self):

currently active, else

:return: The time how long the current state is active.

crtype: float

This method returns the time how long the current state

return time.time() — self. time stamp state change

def last transition condition(self):
nmnn

:return: The last transition condition.

irtype: str

This method returns the last transition condition.

return self. last transition condition

def last_transition condition was(self,

condition):

is

False.

active.

is

if this

if the state machine

These arguments and

the callback execution.

currently

be executed on state changes.

callback ,

in

the

34/ 3]

141

142

143

144

145

146

182

193

194

195

:param condition :
:type condition: str

Unittest for state_machine

The condition to be checked

:return: True if the given condition was the last transition condition, else False.

:rtype: bool

This methods returns the boolean information if the last transition condition is
equivalent to the given condition.

mon

return self. last transition condition = condition

def previous
mon

state(self):

:return: The previous state.

crtype: str

This method returns the previous
mnn
return self. prev state

def previous state was(self,

param state:
:type state: str

state of the state machine.

state):

The state to be checked

creturn: True if the given state was previously active, else False.
irtype: bool
This methods returns the boolean information if the state machine was previously in the

given state.
nmonn

return self. prev state

def previous state

== state

duration(self):

:return: The time how long the previous state was active.
crtype: float
This method returns the time how long the previous state was active.
mnn
return self. prev state dt
def set state (self, target state, condition):
logger.log(self. log Ivl__, "%s State change (%s): %s —> %s", self.LOG_PREFIX, repr(
condition), repr(self. state), repr(target state))
timestamp = time.time ()
self. prev state = self. state
if self._ _prev_state__ is None:
self. prev state dt = 0.
else:
self. prev state dt = timestamp — self. time stamp state change
self. state = target state
self. last transition condition = condition
self. _time_stamp_state_change__ = timestamp
self. conditions start time = {}

Callback collect
this state change callbacks
this state change callbacks.

- 1))

this state change callbacks.
get(None, []))

this state change callbacks.
condition , []))

this state change callbacks.

get(condition ,

(1)

= [l

extend(self. state change callbacks . get(None, {}).get(None

extend (self. state change callbacks .get(target state, {}).

extend (self. .get(None, {}).get(

__state change callbacks

extend(self. state change callbacks _ .get(target state, {}).

35/ 34

196

197

198

199

200

201

202

204

205

Unittest for state_machine

Callback sorting
this state change callbacks.sort()

Callback execution

for cid

logger.debug('Executing callback %d — %s.%s"',
__name_)

. callback , args, kwargs in this state change callbacks:

callback(*args, *xkwargs)

def work(self):

mnn

This Method needs to be executed

tm = time.time()
transitions = self .TRANSITIONS. get(self.this state())
if transitions is not None:

active transitions = []
cnt = 0
for method name, transition delay, target state in transitions:
method = getattr(self, method name)
if method():
if method name not in self. conditions start time
self. conditions start_time__ [method name] = tm
if tm — self. conditions start time [method name] >= transition delay:

cyclicly to enable the state machine.

active transitions.append({transition delay — tm + self.

active transitions.sort ()
self. set state (active transitions[0][2],

__conditions_start_time__ [method name], cnt, target state, method name))
else:
self. conditions start_time__ [method name] = tm
cnt 4= 1
if len(active transitions) > O0:

active transitions[0][3])

cid, callback. module , callback.

36/

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 3.13.5 (final)
	Coverage Statistic

	Tested Requirements
	Module Initialisation
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments

	Transition Changes
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation

	Module Interface
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration

	Transition Callbacks
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Trace for testrun with python 3.13.5 (final)
	Tests with status Info (20)
	 REQ-0005
	 REQ-0006
	 REQ-0007
	 REQ-0008
	 REQ-0017
	 REQ-0018
	 REQ-0019
	 REQ-0009
	 REQ-0010
	 REQ-0011
	 REQ-0012
	 REQ-0013
	 REQ-0014
	 REQ-0015
	 REQ-0016
	 REQ-0001
	 REQ-0002
	 REQ-0003
	 REQ-0004
	 REQ-0020

	Test-Coverage
	 state_machine
	 state_machine.__init__.py

