
Unittest for state machine

December 26, 2019

Unittest for state machine

Contents

1 Test Information 4

1.1 Test Candidate Information . 4

1.2 Unittest Information . 4

1.3 Test System Information . 4

2 Statistic 4

2.1 Test-Statistic for testrun with python 2.7.17 (final) . 4

2.2 Test-Statistic for testrun with python 3.6.9 (final) . 5

2.3 Coverage Statistic . 5

3 Tested Requirements 6

3.1 Module Initialisation . 6

3.1.1 Default State . 6

3.1.2 Default Last Transition Condtion . 6

3.1.3 Default Previous State . 7

3.1.4 Additional Keyword Arguments . 8

3.2 Transition Changes . 9

3.2.1 Transitiondefinition and -flow . 9

3.2.2 Transitiontiming . 11

3.2.3 Transitionpriorisation . 12

3.3 Module Interface . 13

3.3.1 This State . 13

3.3.2 This State is . 14

3.3.3 This State Duration . 15

3.3.4 Last Transition Condition . 15

3.3.5 Last Transition Condition was . 16

3.3.6 Previous State . 17

3.3.7 Previous State was . 18

3.3.8 Previous State Duration . 19

3.4 Transition Callbacks . 20

3.4.1 State change callback for a defined transition and targetstate . 20

3.4.2 State change callback for a defined transition . 21

3.4.3 State change callback for a defined targetstate . 22

3.4.4 State change callback for all kind of state changes . 23

1 / 58

Unittest for state machine

A Trace for testrun with python 2.7.17 (final) 25

A.1 Tests with status Info (19) . 25

A.1.1 Default State . 25

A.1.2 Default Last Transition Condtion . 25

A.1.3 Default Previous State . 26

A.1.4 Additional Keyword Arguments . 26

A.1.5 Transitiondefinition and -flow . 27

A.1.6 Transitiontiming . 28

A.1.7 Transitionpriorisation . 30

A.1.8 This State . 30

A.1.9 This State is . 31

A.1.10 This State Duration . 32

A.1.11 Last Transition Condition . 32

A.1.12 Last Transition Condition was . 33

A.1.13 Previous State . 33

A.1.14 Previous State was . 34

A.1.15 Previous State Duration . 35

A.1.16 State change callback for a defined transition and targetstate . 35

A.1.17 State change callback for a defined transition . 36

A.1.18 State change callback for a defined targetstate . 37

A.1.19 State change callback for all kind of state changes . 38

B Trace for testrun with python 3.6.9 (final) 39

B.1 Tests with status Info (19) . 39

B.1.1 Default State . 39

B.1.2 Default Last Transition Condtion . 40

B.1.3 Default Previous State . 40

B.1.4 Additional Keyword Arguments . 41

B.1.5 Transitiondefinition and -flow . 42

B.1.6 Transitiontiming . 43

B.1.7 Transitionpriorisation . 44

2 / 58

Unittest for state machine

B.1.8 This State . 45

B.1.9 This State is . 46

B.1.10 This State Duration . 46

B.1.11 Last Transition Condition . 47

B.1.12 Last Transition Condition was . 47

B.1.13 Previous State . 48

B.1.14 Previous State was . 49

B.1.15 Previous State Duration . 49

B.1.16 State change callback for a defined transition and targetstate . 50

B.1.17 State change callback for a defined transition . 51

B.1.18 State change callback for a defined targetstate . 52

B.1.19 State change callback for all kind of state changes . 53

C Test-Coverage 54

C.1 state machine . 54

C.1.1 state machine. init .py . 54

3 / 58

Unittest for state machine

1 Test Information

1.1 Test Candidate Information

This Module helps implementing state machines.

Library Information

Name state machine

State Released

Supported Interpreters python2, python3

Version 62acd0029b6217cb4a2151caafb560a7

Dependencies

1.2 Unittest Information

Unittest Information

Version 769ddbf886b3c54506bf1f74ea6e1878

Testruns with python 2.7.17 (final), python 3.6.9 (final)

1.3 Test System Information

System Information

Architecture 64bit

Distribution LinuxMint 19.3 tricia

Hostname ahorn

Kernel 5.0.0-37-generic (#40 18.04.1-Ubuntu SMP Thu Nov 14 12:06:39 UTC 2019)

Machine x86 64

Path /user data/data/dirk/prj/modules/state machine/unittest

System Linux

Username dirk

2 Statistic

2.1 Test-Statistic for testrun with python 2.7.17 (final)

Number of tests 19

Number of successfull tests 19

Number of possibly failed tests 0

Number of failed tests 0

Executionlevel Full Test (all defined tests)

Time consumption 1.651s

4 / 58

Unittest for state machine

2.2 Test-Statistic for testrun with python 3.6.9 (final)

Number of tests 19

Number of successfull tests 19

Number of possibly failed tests 0

Number of failed tests 0

Executionlevel Full Test (all defined tests)

Time consumption 1.649s

2.3 Coverage Statistic

Module- or Filename Line-Coverage Branch-Coverage

state machine 100.0% 100.0%

state machine. init .py 100.0%

5 / 58

Unittest for state machine

3 Tested Requirements

3.1 Module Initialisation

3.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

State machine is in the initial state after initialisation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.1!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (22)

Start-Time: 2019-12-26 13:33:59,995

Finished-Time: 2019-12-26 13:33:59,996

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success State after initialisation is correct (Content ’state c’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.1!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (22)

Start-Time: 2019-12-26 13:34:01,995

Finished-Time: 2019-12-26 13:34:01,995

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success State after initialisation is correct (Content ’state c’ and Type is <class ’str’>).

3.1.2 Default Last Transition Condtion

Description

The state machine shall return the string init for last transition condition after initalisation.

6 / 58

Unittest for state machine

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is init after initialisation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.2!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (23)

Start-Time: 2019-12-26 13:33:59,996

Finished-Time: 2019-12-26 13:33:59,996

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success Last transition condition after initialisation is correct (Content ’ init ’ and Type is <type

’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.2!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (23)

Start-Time: 2019-12-26 13:34:01,995

Finished-Time: 2019-12-26 13:34:01,995

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success Last transition condition after initialisation is correct (Content ’ init ’ and Type is <class

’str’>).

3.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

7 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success. See also full trace in section A.1.3!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (24)

Start-Time: 2019-12-26 13:33:59,996

Finished-Time: 2019-12-26 13:33:59,996

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success Last state after initialisation is correct (Content None and Type is <type ’NoneType’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.3!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (24)

Start-Time: 2019-12-26 13:34:01,995

Finished-Time: 2019-12-26 13:34:01,996

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state c

Success Last state after initialisation is correct (Content None and Type is <class ’NoneType’>).

3.1.4 Additional Keyword Arguments

Description

The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation

Store further information (e.g. for calculation of the transition conditions).

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.4!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (25)

Start-Time: 2019-12-26 13:33:59,997

Finished-Time: 2019-12-26 13:33:59,997

Time-Consumption 0.001s

8 / 58

Unittest for state machine

Testsummary:

Info Initialising the state machine with state c

Success Keyword argument kw arg no 4 stored in state machine is correct (Content {’1’: 1, ’2’: ’two’}
and Type is <type ’dict’>).

Success Keyword argument kw arg no 1 stored in state machine is correct (Content 1 and Type is <type

’int’>).
Success Keyword argument kw arg no 3 stored in state machine is correct (Content True and Type is

<type ’bool’>).
Success Keyword argument kw arg no 2 stored in state machine is correct (Content ’2’ and Type is

<type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.4!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (25)

Start-Time: 2019-12-26 13:34:01,996

Finished-Time: 2019-12-26 13:34:01,996

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state c

Success Keyword argument kw arg no 1 stored in state machine is correct (Content 1 and Type is <class

’int’>).
Success Keyword argument kw arg no 2 stored in state machine is correct (Content ’2’ and Type is

<class ’str’>).
Success Keyword argument kw arg no 3 stored in state machine is correct (Content True and Type is

<class ’bool’>).
Success Keyword argument kw arg no 4 stored in state machine is correct (Content {’1’: 1, ’2’: ’two’}

and Type is <class ’dict’>).

3.2 Transition Changes

3.2.1 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation

Definition of the transitions for a state machine.

Fitcriterion

The order of at least three state changes is correct.

9 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success. See also full trace in section A.1.5!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (28)

Start-Time: 2019-12-26 13:33:59,997

Finished-Time: 2019-12-26 13:33:59,998

Time-Consumption 0.001s

Testsummary:

Info Initialising state machine with state a

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Info Work routine executed the 1st time to do the state change. Defined Transitions are:

True→state b (0.0s); False→state c (0.0s)
Success State after 1st execution of work method is correct (Content ’state b’ and Type is <type ’str’>).

Info Work routine executed the 2nd time to do the state change. Defined Transitions are:

False→state a (0.0s); True→state c (0.0s)
Success State after 2nd execution of work method is correct (Content ’state c’ and Type is <type

’str’>).
Info Work routine executed the 3rd time with no effect. No Transitions starting from state c (dead

end)
Success State after 3rd execution of work method is correct (Content ’state c’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.5!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (28)

Start-Time: 2019-12-26 13:34:01,996

Finished-Time: 2019-12-26 13:34:01,997

Time-Consumption 0.001s

Testsummary:

Info Initialising state machine with state a

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Info Work routine executed the 1st time to do the state change. Defined Transitions are:

True→state b (0.0s); False→state c (0.0s)
Success State after 1st execution of work method is correct (Content ’state b’ and Type is <class

’str’>).
Info Work routine executed the 2nd time to do the state change. Defined Transitions are:

False→state a (0.0s); True→state c (0.0s)
Success State after 2nd execution of work method is correct (Content ’state c’ and Type is <class

’str’>).
Info Work routine executed the 3rd time with no effect. No Transitions starting from state c (dead

end)
Success State after 3rd execution of work method is correct (Content ’state c’ and Type is <class

’str’>).

10 / 58

Unittest for state machine

3.2.2 Transitiontiming

Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

Reason for the implementation

Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion

The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (±0.05s).

Testresult

This test was passed with the state: Success. See also full trace in section A.1.6!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (29)

Start-Time: 2019-12-26 13:33:59,999

Finished-Time: 2019-12-26 13:34:00,378

Time-Consumption 0.380s

Testsummary:

Info Initialising state machine with state a

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Info Waiting for 0.160s or state change

Success State after 1st cycle is correct (Content ’state b’ and Type is <type ’str’>).

Success Transition time after 1st cycle is correct (Content 0.15059208869934082 in [0.145 ... 0.155]

and Type is <type ’float’>).
Info Waiting for 0.235s or state change

Success State after 2nd cycle is correct (Content ’state c’ and Type is <type ’str’>).

Success Transition time after 2nd cycle is correct (Content 0.1503589153289795 in [0.145 ... 0.155]

and Type is <type ’float’>).
Success Previous state duration is correct (Content 0.22557401657104492 in [0.21999999999999997 ...

0.22999999999999998] and Type is <type ’float’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.6!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (29)

Start-Time: 2019-12-26 13:34:01,997

Finished-Time: 2019-12-26 13:34:02,377

Time-Consumption 0.380s

Testsummary:

Info Initialising state machine with state a

11 / 58

Unittest for state machine

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Info Waiting for 0.160s or state change

Success State after 1st cycle is correct (Content ’state b’ and Type is <class ’str’>).

Success Transition time after 1st cycle is correct (Content 0.15062165260314941 in [0.145 ... 0.155]

and Type is <class ’float’>).
Info Waiting for 0.235s or state change

Success State after 2nd cycle is correct (Content ’state c’ and Type is <class ’str’>).

Success Transition time after 2nd cycle is correct (Content 0.15032720565795898 in [0.145 ... 0.155]

and Type is <class ’float’>).
Success Previous state duration is correct (Content 0.2256786823272705 in [0.21999999999999997 ...

0.22999999999999998] and Type is <class ’float’>).

3.2.3 Transitionpriorisation

Description

The state machine shall use the first active transition. If multiple transition are active, the transition with the highest

overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion

At least one transition with at least two active conditions results in the expected state change.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.7!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (30)

Start-Time: 2019-12-26 13:34:00,379

Finished-Time: 2019-12-26 13:34:00,623

Time-Consumption 0.244s

Testsummary:

Info Initialising state machine with state a, a transition to state b after 0.151s and a transition to

state c after 0.150s
Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Info Waiting for 0.300s or state change

Success State after 1st cycle is correct (Content ’state c’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.7!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (30)

Start-Time: 2019-12-26 13:34:02,377

12 / 58

Unittest for state machine

Finished-Time: 2019-12-26 13:34:02,621

Time-Consumption 0.244s

Testsummary:

Info Initialising state machine with state a, a transition to state b after 0.151s and a transition to

state c after 0.150s
Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Info Waiting for 0.300s or state change

Success State after 1st cycle is correct (Content ’state c’ and Type is <class ’str’>).

3.3 Module Interface

3.3.1 This State

Description

The Module shall have a method for getting the current state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.8!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (33)

Start-Time: 2019-12-26 13:34:00,623

Finished-Time: 2019-12-26 13:34:00,624

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state c

Success Returnvalue of this state() is correct (Content ’state c’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.8!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (33)

Start-Time: 2019-12-26 13:34:02,621

Finished-Time: 2019-12-26 13:34:02,622

Time-Consumption 0.001s

Testsummary:

13 / 58

Unittest for state machine

Info Initialising the state machine with state c

Success Returnvalue of this state() is correct (Content ’state c’ and Type is <class ’str’>).

3.3.2 This State is

Description

The Module shall have a method for checking if the given state is currently active.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.9!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (34)

Start-Time: 2019-12-26 13:34:00,625

Finished-Time: 2019-12-26 13:34:00,626

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state c

Success Returnvalue of this state is(state c) is correct (Content True and Type is <type ’bool’>).

Success Returnvalue of this state is(state b) is correct (Content False and Type is <type ’bool’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.9!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (34)

Start-Time: 2019-12-26 13:34:02,623

Finished-Time: 2019-12-26 13:34:02,624

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state c

Success Returnvalue of this state is(state c) is correct (Content True and Type is <class ’bool’>).

Success Returnvalue of this state is(state b) is correct (Content False and Type is <class ’bool’>).

14 / 58

Unittest for state machine

3.3.3 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the current state duration (± 0.05s).

Testresult

This test was passed with the state: Success. See also full trace in section A.1.10!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (35)

Start-Time: 2019-12-26 13:34:00,626

Finished-Time: 2019-12-26 13:34:00,879

Time-Consumption 0.252s

Testsummary:

Info Running state machine test sequence.

Success Return Value of this state duration() is correct (Content 0.2511169910430908 in [0.2 ... 0.3]

and Type is <type ’float’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.10!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (35)

Start-Time: 2019-12-26 13:34:02,624

Finished-Time: 2019-12-26 13:34:02,876

Time-Consumption 0.252s

Testsummary:

Info Running state machine test sequence.

Success Return Value of this state duration() is correct (Content 0.2508230209350586 in [0.2 ... 0.3]

and Type is <class ’float’>).

3.3.4 Last Transition Condition

Description

The Module shall have a method for getting the last transition condition.

15 / 58

Unittest for state machine

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned transition condition fits to the expectation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.11!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (36)

Start-Time: 2019-12-26 13:34:00,879

Finished-Time: 2019-12-26 13:34:00,880

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of last transition condition() is correct (Content ’condition a’ and Type is <type

’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.11!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (36)

Start-Time: 2019-12-26 13:34:02,876

Finished-Time: 2019-12-26 13:34:02,877

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of last transition condition() is correct (Content ’condition a’ and Type is <class

’str’>).

3.3.5 Last Transition Condition was

Description

The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

16 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success. See also full trace in section A.1.12!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (37)

Start-Time: 2019-12-26 13:34:00,881

Finished-Time: 2019-12-26 13:34:00,883

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of last transition condition(condition a) is correct (Content True and Type is <type

’bool’>).
Success Returnvalue of last transition condition(condition c) is correct (Content False and Type is <type

’bool’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.12!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (37)

Start-Time: 2019-12-26 13:34:02,878

Finished-Time: 2019-12-26 13:34:02,879

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of last transition condition(condition a) is correct (Content True and Type is <class

’bool’>).
Success Returnvalue of last transition condition(condition c) is correct (Content False and Type is

<class ’bool’>).

3.3.6 Previous State

Description

The Module shall have a method for getting the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.13!

17 / 58

Unittest for state machine

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (38)

Start-Time: 2019-12-26 13:34:00,883

Finished-Time: 2019-12-26 13:34:00,884

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of previous state() is correct (Content ’state a’ and Type is <type ’str’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.13!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (38)

Start-Time: 2019-12-26 13:34:02,879

Finished-Time: 2019-12-26 13:34:02,880

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of previous state() is correct (Content ’state a’ and Type is <class ’str’>).

3.3.7 Previous State was

Description

The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.14!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (39)

Start-Time: 2019-12-26 13:34:00,885

Finished-Time: 2019-12-26 13:34:00,887

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of previous state was(state a) is correct (Content True and Type is <type ’bool’>).

18 / 58

Unittest for state machine

Success Returnvalue of previous state was(state b) is correct (Content False and Type is <type ’bool’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.14!

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (39)

Start-Time: 2019-12-26 13:34:02,881

Finished-Time: 2019-12-26 13:34:02,882

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Success Returnvalue of previous state was(state a) is correct (Content True and Type is <class ’bool’>).

Success Returnvalue of previous state was(state b) is correct (Content False and Type is <class

’bool’>).

3.3.8 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (± 0.05s).

Testresult

This test was passed with the state: Success. See also full trace in section A.1.15!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (40)

Start-Time: 2019-12-26 13:34:00,887

Finished-Time: 2019-12-26 13:34:01,640

Time-Consumption 0.753s

Testsummary:

Info Running state machine test sequence.

Success Return Value of previous state duration() is correct (Content 0.7514150142669678 in [0.7 ...

0.8] and Type is <type ’float’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.15!

19 / 58

Unittest for state machine

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (40)

Start-Time: 2019-12-26 13:34:02,882

Finished-Time: 2019-12-26 13:34:03,635

Time-Consumption 0.753s

Testsummary:

Info Running state machine test sequence.

Success Return Value of previous state duration() is correct (Content 0.7513992786407471 in [0.7 ...

0.8] and Type is <class ’float’>).

3.4 Transition Callbacks

3.4.1 State change callback for a defined transition and targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition condition and target state.

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and targetstate and at least for one other condition not.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.16!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (43)

Start-Time: 2019-12-26 13:34:01,640

Finished-Time: 2019-12-26 13:34:01,644

Time-Consumption 0.004s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success List of the submitted values for Execution of state machine callback (1) (state b, condition a)

identified by a sequence number is correct (Content [1] and Type is <type ’list’>).
Success List of the submitted values for Execution of state machine callback (2) (state b, condition a)

identified by a sequence number is correct (Content [2] and Type is <type ’list’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.16!

20 / 58

Unittest for state machine

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (43)

Start-Time: 2019-12-26 13:34:03,635

Finished-Time: 2019-12-26 13:34:03,639

Time-Consumption 0.004s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success List of the submitted values for Execution of state machine callback (1) (state b, condition a)

identified by a sequence number is correct (Content [1] and Type is <class ’list’>).
Success List of the submitted values for Execution of state machine callback (2) (state b, condition a)

identified by a sequence number is correct (Content [2] and Type is <class ’list’>).

3.4.2 State change callback for a defined transition

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition condition and all target states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and at least for one other transition condition not.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.17!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (44)

Start-Time: 2019-12-26 13:34:01,645

Finished-Time: 2019-12-26 13:34:01,649

Time-Consumption 0.004s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success List of the submitted values for Execution of state machine callback (1) (all transitions, condi-

tion b) identified by a sequence number is correct (Content [2, 5] and Type is <type ’list’>).
Success List of the submitted values for Execution of state machine callback (2) (all transitions, condi-

tion b) identified by a sequence number is correct (Content [3, 6] and Type is <type ’list’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.17!

21 / 58

Unittest for state machine

Testrun: python 3.6.9 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (44)

Start-Time: 2019-12-26 13:34:03,639

Finished-Time: 2019-12-26 13:34:03,643

Time-Consumption 0.004s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success List of the submitted values for Execution of state machine callback (1) (all transitions, condi-

tion b) identified by a sequence number is correct (Content [2, 5] and Type is <class ’list’>).
Success List of the submitted values for Execution of state machine callback (2) (all transitions, condi-

tion b) identified by a sequence number is correct (Content [3, 6] and Type is <class ’list’>).

3.4.3 State change callback for a defined targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transition conditions and a defined target state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion

Methods are called in the registration order after state change with the defined targetstate and at least for one other

targetstate not.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.18!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (45)

Start-Time: 2019-12-26 13:34:01,649

Finished-Time: 2019-12-26 13:34:01,651

Time-Consumption 0.002s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success List of the submitted values for Execution of state machine callback (1) (state b, all conditions)

identified by a sequence number is correct (Content [1, 5] and Type is <type ’list’>).
Success List of the submitted values for Execution of state machine callback (2) (state b, all conditions)

identified by a sequence number is correct (Content [2, 6] and Type is <type ’list’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.18!

Testrun: python 3.6.9 (final)

22 / 58

Unittest for state machine

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (45)

Start-Time: 2019-12-26 13:34:03,643

Finished-Time: 2019-12-26 13:34:03,646

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success List of the submitted values for Execution of state machine callback (1) (state b, all conditions)

identified by a sequence number is correct (Content [1, 5] and Type is <class ’list’>).
Success List of the submitted values for Execution of state machine callback (2) (state b, all conditions)

identified by a sequence number is correct (Content [2, 6] and Type is <class ’list’>).

3.4.4 State change callback for all kind of state changes

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

Testresult

This test was passed with the state: Success. See also full trace in section A.1.19!

Testrun: python 2.7.17 (final)

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (46)

Start-Time: 2019-12-26 13:34:01,651

Finished-Time: 2019-12-26 13:34:01,652

Time-Consumption 0.001s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success List of the submitted values for Execution of state machine callback (1) (all transitions,

all conditions) identified by a sequence number is correct (Content [1, 4, 7, 10] and Type

is <type ’list’>).
Success List of the submitted values for Execution of state machine callback (2) (all transitions,

all conditions) identified by a sequence number is correct (Content [2, 5, 8, 11] and Type

is <type ’list’>).

Testresult

This test was passed with the state: Success. See also full trace in section B.1.19!

Testrun: python 3.6.9 (final)

23 / 58

Unittest for state machine

Caller: /user data/data/dirk/prj/modules/state machine/unittest/src/tests/ init .py (46)

Start-Time: 2019-12-26 13:34:03,646

Finished-Time: 2019-12-26 13:34:03,648

Time-Consumption 0.001s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Success List of the submitted values for Execution of state machine callback (1) (all transitions,

all conditions) identified by a sequence number is correct (Content [1, 4, 7, 10] and Type

is <class ’list’>).
Success List of the submitted values for Execution of state machine callback (2) (all transitions,

all conditions) identified by a sequence number is correct (Content [2, 5, 8, 11] and Type

is <class ’list’>).

24 / 58

Unittest for state machine

A Trace for testrun with python 2.7.17 (final)

A.1 Tests with status Info (19)

A.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

State machine is in the initial state after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success State after initialisation is correct (Content ’state c’ and Type is <type ’str’>).

Result: 'state_c' (<type 'str'>)

Expectation: result = 'state_c' (<type 'str'>)

A.1.2 Default Last Transition Condtion

Description

The state machine shall return the string init for last transition condition after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is init after initialisation.

25 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Last transition condition after initialisation is correct (Content ’ init ’ and Type is <type ’str’>).

Result: '__init__' (<type 'str'>)

Expectation: result = '__init__' (<type 'str'>)

A.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Last state after initialisation is correct (Content None and Type is <type ’NoneType’>).

Result: None (<type 'NoneType'>)

Expectation: result = None (<type 'NoneType'>)

A.1.4 Additional Keyword Arguments

Description

The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation

Store further information (e.g. for calculation of the transition conditions).

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

26 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Keyword argument kw arg no 4 stored in state machine is correct (Content {’1’: 1, ’2’: ’two’} and Type

is <type ’dict’>).

Result: { '1': 1, '2': 'two' } (<type 'dict'>)

Expectation: result = { '1': 1, '2': 'two' } (<type 'dict'>)

Success Keyword argument kw arg no 1 stored in state machine is correct (Content 1 and Type is <type ’int’>).

Result: 1 (<type 'int'>)

Expectation: result = 1 (<type 'int'>)

Success Keyword argument kw arg no 3 stored in state machine is correct (Content True and Type is <type

’bool’>).

Result: True (<type 'bool'>)

Expectation: result = True (<type 'bool'>)

Success Keyword argument kw arg no 2 stored in state machine is correct (Content ’2’ and Type is <type ’str’>).

Result: '2' (<type 'str'>)

Expectation: result = '2' (<type 'str'>)

A.1.5 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation

Definition of the transitions for a state machine.

Fitcriterion

The order of at least three state changes is correct.

27 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Result: 'state_a' (<type 'str'>)

Expectation: result = 'state_a' (<type 'str'>)

Info Work routine executed the 1st time to do the state change. Defined Transitions are: True→state b (0.0s);

False→state c (0.0s)

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

Success State after 1st execution of work method is correct (Content ’state b’ and Type is <type ’str’>).

Result: 'state_b' (<type 'str'>)

Expectation: result = 'state_b' (<type 'str'>)

Info Work routine executed the 2nd time to do the state change. Defined Transitions are: False→state a (0.0s);

True→state c (0.0s)

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

Success State after 2nd execution of work method is correct (Content ’state c’ and Type is <type ’str’>).

Result: 'state_c' (<type 'str'>)

Expectation: result = 'state_c' (<type 'str'>)

Info Work routine executed the 3rd time with no effect. No Transitions starting from state c (dead end)

Success State after 3rd execution of work method is correct (Content ’state c’ and Type is <type ’str’>).

Result: 'state_c' (<type 'str'>)

Expectation: result = 'state_c' (<type 'str'>)

A.1.6 Transitiontiming

Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

Reason for the implementation

Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

28 / 58

Unittest for state machine

Fitcriterion

The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (±0.05s).

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Result: 'state_a' (<type 'str'>)

Expectation: result = 'state_a' (<type 'str'>)

Info Waiting for 0.160s or state change

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

Success State after 1st cycle is correct (Content ’state b’ and Type is <type ’str’>).

Result: 'state_b' (<type 'str'>)

Expectation: result = 'state_b' (<type 'str'>)

Success Transition time after 1st cycle is correct (Content 0.15059208869934082 in [0.145 ... 0.155] and Type is

<type ’float’>).

Result: 0.15059208869934082 (<type 'float'>)

Expectation: 0.145 <= result <= 0.155

Info Waiting for 0.235s or state change

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

Success State after 2nd cycle is correct (Content ’state c’ and Type is <type ’str’>).

Result: 'state_c' (<type 'str'>)

Expectation: result = 'state_c' (<type 'str'>)

Success Transition time after 2nd cycle is correct (Content 0.1503589153289795 in [0.145 ... 0.155] and Type is

<type ’float’>).

Result: 0.1503589153289795 (<type 'float'>)

Expectation: 0.145 <= result <= 0.155

Success Previous state duration is correct (Content 0.22557401657104492 in [0.21999999999999997 ...

0.22999999999999998] and Type is <type ’float’>).

Result: 0.22557401657104492 (<type 'float'>)

Expectation: 0.21999999999999997 <= result <= 0.22999999999999998

29 / 58

Unittest for state machine

A.1.7 Transitionpriorisation

Description

The state machine shall use the first active transition. If multiple transition are active, the transition with the highest

overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion

At least one transition with at least two active conditions results in the expected state change.

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a, a transition to state b after 0.151s and a transition to state c after

0.150s

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <type ’str’>).

Result: 'state_a' (<type 'str'>)

Expectation: result = 'state_a' (<type 'str'>)

Info Waiting for 0.300s or state change

Executing method work after 0.000s

Executing method work after 0.060s

Executing method work after 0.121s

Executing method work after 0.181s

StateMachine: State change ('condition_true'): 'state_a' -> 'state_c'

Success State after 1st cycle is correct (Content ’state c’ and Type is <type ’str’>).

Result: 'state_c' (<type 'str'>)

Expectation: result = 'state_c' (<type 'str'>)

A.1.8 This State

Description

The Module shall have a method for getting the current state.

Reason for the implementation

Comfortable user interface.

30 / 58

Unittest for state machine

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Returnvalue of this state() is correct (Content ’state c’ and Type is <type ’str’>).

Result: 'state_c' (<type 'str'>)

Expectation: result = 'state_c' (<type 'str'>)

A.1.9 This State is

Description

The Module shall have a method for checking if the given state is currently active.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Returnvalue of this state is(state c) is correct (Content True and Type is <type ’bool’>).

Result: True (<type 'bool'>)

Expectation: result = True (<type 'bool'>)

Success Returnvalue of this state is(state b) is correct (Content False and Type is <type ’bool’>).

Result: False (<type 'bool'>)

Expectation: result = False (<type 'bool'>)

31 / 58

Unittest for state machine

A.1.10 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the current state duration (± 0.05s).

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.25s

Success Return Value of this state duration() is correct (Content 0.2511169910430908 in [0.2 ... 0.3] and Type

is <type ’float’>).

Result: 0.2511169910430908 (<type 'float'>)

Expectation: 0.2 <= result <= 0.3

A.1.11 Last Transition Condition

Description

The Module shall have a method for getting the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned transition condition fits to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

32 / 58

Unittest for state machine

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of last transition condition() is correct (Content ’condition a’ and Type is <type ’str’>).

Result: 'condition_a' (<type 'str'>)

Expectation: result = 'condition_a' (<type 'str'>)

A.1.12 Last Transition Condition was

Description

The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of last transition condition(condition a) is correct (Content True and Type is <type ’bool’>).

Result: True (<type 'bool'>)

Expectation: result = True (<type 'bool'>)

Success Returnvalue of last transition condition(condition c) is correct (Content False and Type is <type ’bool’>).

Result: False (<type 'bool'>)

Expectation: result = False (<type 'bool'>)

A.1.13 Previous State

Description

The Module shall have a method for getting the previous state.

Reason for the implementation

Comfortable user interface.

33 / 58

Unittest for state machine

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of previous state() is correct (Content ’state a’ and Type is <type ’str’>).

Result: 'state_a' (<type 'str'>)

Expectation: result = 'state_a' (<type 'str'>)

A.1.14 Previous State was

Description

The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of previous state was(state a) is correct (Content True and Type is <type ’bool’>).

Result: True (<type 'bool'>)

Expectation: result = True (<type 'bool'>)

Success Returnvalue of previous state was(state b) is correct (Content False and Type is <type ’bool’>).

Result: False (<type 'bool'>)

Expectation: result = False (<type 'bool'>)

34 / 58

Unittest for state machine

A.1.15 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (± 0.05s).

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.75s

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Success Return Value of previous state duration() is correct (Content 0.7514150142669678 in [0.7 ... 0.8] and

Type is <type ’float’>).

Result: 0.7514150142669678 (<type 'float'>)

Expectation: 0.7 <= result <= 0.8

A.1.16 State change callback for a defined transition and targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition condition and target state.

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and targetstate and at least for one other condition not.

35 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by callback_execution

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 6 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success List of the submitted values for Execution of state machine callback (1) (state b, condition a) identified

by a sequence number is correct (Content [1] and Type is <type ’list’>).

Result: [1] (<type 'list'>)

Expectation: result = [1] (<type 'list'>)

Success List of the submitted values for Execution of state machine callback (2) (state b, condition a) identified

by a sequence number is correct (Content [2] and Type is <type ’list’>).

Result: [2] (<type 'list'>)

Expectation: result = [2] (<type 'list'>)

A.1.17 State change callback for a defined transition

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition condition and all target states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and at least for one other transition condition not.

36 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by callback_execution

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 6 caused by callback_execution

Increasing sequence number to 7 caused by callback_execution

Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success List of the submitted values for Execution of state machine callback (1) (all transitions, condition b)

identified by a sequence number is correct (Content [2, 5] and Type is <type ’list’>).

Result: [2, 5] (<type 'list'>)

Expectation: result = [2, 5] (<type 'list'>)

Success List of the submitted values for Execution of state machine callback (2) (all transitions, condition b)

identified by a sequence number is correct (Content [3, 6] and Type is <type ’list’>).

Result: [3, 6] (<type 'list'>)

Expectation: result = [3, 6] (<type 'list'>)

A.1.18 State change callback for a defined targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transition conditions and a defined target state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion

Methods are called in the registration order after state change with the defined targetstate and at least for one other

targetstate not.

37 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by callback_execution

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 6 caused by callback_execution

Increasing sequence number to 7 caused by callback_execution

Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success List of the submitted values for Execution of state machine callback (1) (state b, all conditions) identified

by a sequence number is correct (Content [1, 5] and Type is <type ’list’>).

Result: [1, 5] (<type 'list'>)

Expectation: result = [1, 5] (<type 'list'>)

Success List of the submitted values for Execution of state machine callback (2) (state b, all conditions) identified

by a sequence number is correct (Content [2, 6] and Type is <type ’list’>).

Result: [2, 6] (<type 'list'>)

Expectation: result = [2, 6] (<type 'list'>)

A.1.19 State change callback for all kind of state changes

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

38 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by callback_execution

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by callback_execution

Increasing sequence number to 6 caused by callback_execution

Increasing sequence number to 7 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 8 caused by callback_execution

Increasing sequence number to 9 caused by callback_execution

Increasing sequence number to 10 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Increasing sequence number to 11 caused by callback_execution

Increasing sequence number to 12 caused by callback_execution

Success List of the submitted values for Execution of state machine callback (1) (all transitions, all conditions)

identified by a sequence number is correct (Content [1, 4, 7, 10] and Type is <type ’list’>).

Result: [1, 4, 7, 10] (<type 'list'>)

Expectation: result = [1, 4, 7, 10] (<type 'list'>)

Success List of the submitted values for Execution of state machine callback (2) (all transitions, all conditions)

identified by a sequence number is correct (Content [2, 5, 8, 11] and Type is <type ’list’>).

Result: [2, 5, 8, 11] (<type 'list'>)

Expectation: result = [2, 5, 8, 11] (<type 'list'>)

B Trace for testrun with python 3.6.9 (final)

B.1 Tests with status Info (19)

B.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

39 / 58

Unittest for state machine

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

State machine is in the initial state after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success State after initialisation is correct (Content ’state c’ and Type is <class ’str’>).

Result: 'state_c' (<class 'str'>)

Expectation: result = 'state_c' (<class 'str'>)

B.1.2 Default Last Transition Condtion

Description

The state machine shall return the string init for last transition condition after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is init after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Last transition condition after initialisation is correct (Content ’ init ’ and Type is <class ’str’>).

Result: '__init__' (<class 'str'>)

Expectation: result = '__init__' (<class 'str'>)

B.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

40 / 58

Unittest for state machine

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Last state after initialisation is correct (Content None and Type is <class ’NoneType’>).

Result: None (<class 'NoneType'>)

Expectation: result = None (<class 'NoneType'>)

B.1.4 Additional Keyword Arguments

Description

The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation

Store further information (e.g. for calculation of the transition conditions).

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Keyword argument kw arg no 1 stored in state machine is correct (Content 1 and Type is <class ’int’>).

Result: 1 (<class 'int'>)

Expectation: result = 1 (<class 'int'>)

Success Keyword argument kw arg no 2 stored in state machine is correct (Content ’2’ and Type is <class ’str’>).

41 / 58

Unittest for state machine

Result: '2' (<class 'str'>)

Expectation: result = '2' (<class 'str'>)

Success Keyword argument kw arg no 3 stored in state machine is correct (Content True and Type is <class

’bool’>).

Result: True (<class 'bool'>)

Expectation: result = True (<class 'bool'>)

Success Keyword argument kw arg no 4 stored in state machine is correct (Content {’1’: 1, ’2’: ’two’} and Type

is <class ’dict’>).

Result: { '1': 1, '2': 'two' } (<class 'dict'>)

Expectation: result = { '1': 1, '2': 'two' } (<class 'dict'>)

B.1.5 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation

Definition of the transitions for a state machine.

Fitcriterion

The order of at least three state changes is correct.

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Result: 'state_a' (<class 'str'>)

Expectation: result = 'state_a' (<class 'str'>)

Info Work routine executed the 1st time to do the state change. Defined Transitions are: True→state b (0.0s);

False→state c (0.0s)

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

Success State after 1st execution of work method is correct (Content ’state b’ and Type is <class ’str’>).

42 / 58

Unittest for state machine

Result: 'state_b' (<class 'str'>)

Expectation: result = 'state_b' (<class 'str'>)

Info Work routine executed the 2nd time to do the state change. Defined Transitions are: False→state a (0.0s);

True→state c (0.0s)

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

Success State after 2nd execution of work method is correct (Content ’state c’ and Type is <class ’str’>).

Result: 'state_c' (<class 'str'>)

Expectation: result = 'state_c' (<class 'str'>)

Info Work routine executed the 3rd time with no effect. No Transitions starting from state c (dead end)

Success State after 3rd execution of work method is correct (Content ’state c’ and Type is <class ’str’>).

Result: 'state_c' (<class 'str'>)

Expectation: result = 'state_c' (<class 'str'>)

B.1.6 Transitiontiming

Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

Reason for the implementation

Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion

The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (±0.05s).

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Result: 'state_a' (<class 'str'>)

Expectation: result = 'state_a' (<class 'str'>)

Info Waiting for 0.160s or state change

43 / 58

Unittest for state machine

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

Success State after 1st cycle is correct (Content ’state b’ and Type is <class ’str’>).

Result: 'state_b' (<class 'str'>)

Expectation: result = 'state_b' (<class 'str'>)

Success Transition time after 1st cycle is correct (Content 0.15062165260314941 in [0.145 ... 0.155] and Type is

<class ’float’>).

Result: 0.15062165260314941 (<class 'float'>)

Expectation: 0.145 <= result <= 0.155

Info Waiting for 0.235s or state change

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

Success State after 2nd cycle is correct (Content ’state c’ and Type is <class ’str’>).

Result: 'state_c' (<class 'str'>)

Expectation: result = 'state_c' (<class 'str'>)

Success Transition time after 2nd cycle is correct (Content 0.15032720565795898 in [0.145 ... 0.155] and Type

is <class ’float’>).

Result: 0.15032720565795898 (<class 'float'>)

Expectation: 0.145 <= result <= 0.155

Success Previous state duration is correct (Content 0.2256786823272705 in [0.21999999999999997 ...

0.22999999999999998] and Type is <class ’float’>).

Result: 0.2256786823272705 (<class 'float'>)

Expectation: 0.21999999999999997 <= result <= 0.22999999999999998

B.1.7 Transitionpriorisation

Description

The state machine shall use the first active transition. If multiple transition are active, the transition with the highest

overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion

At least one transition with at least two active conditions results in the expected state change.

44 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Initialising state machine with state a, a transition to state b after 0.151s and a transition to state c after

0.150s

StateMachine: State change ('__init__'): None -> 'state_a'

Success Initial state after Initialisation is correct (Content ’state a’ and Type is <class ’str’>).

Result: 'state_a' (<class 'str'>)

Expectation: result = 'state_a' (<class 'str'>)

Info Waiting for 0.300s or state change

Executing method work after 0.000s

Executing method work after 0.060s

Executing method work after 0.121s

Executing method work after 0.181s

StateMachine: State change ('condition_true'): 'state_a' -> 'state_c'

Success State after 1st cycle is correct (Content ’state c’ and Type is <class ’str’>).

Result: 'state_c' (<class 'str'>)

Expectation: result = 'state_c' (<class 'str'>)

B.1.8 This State

Description

The Module shall have a method for getting the current state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Returnvalue of this state() is correct (Content ’state c’ and Type is <class ’str’>).

Result: 'state_c' (<class 'str'>)

Expectation: result = 'state_c' (<class 'str'>)

45 / 58

Unittest for state machine

B.1.9 This State is

Description

The Module shall have a method for checking if the given state is currently active.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Initialising the state machine with state c

StateMachine: State change ('__init__'): None -> 'state_c'

Success Returnvalue of this state is(state c) is correct (Content True and Type is <class ’bool’>).

Result: True (<class 'bool'>)

Expectation: result = True (<class 'bool'>)

Success Returnvalue of this state is(state b) is correct (Content False and Type is <class ’bool’>).

Result: False (<class 'bool'>)

Expectation: result = False (<class 'bool'>)

B.1.10 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the current state duration (± 0.05s).

46 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.25s

Success Return Value of this state duration() is correct (Content 0.2508230209350586 in [0.2 ... 0.3] and Type

is <class ’float’>).

Result: 0.2508230209350586 (<class 'float'>)

Expectation: 0.2 <= result <= 0.3

B.1.11 Last Transition Condition

Description

The Module shall have a method for getting the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned transition condition fits to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of last transition condition() is correct (Content ’condition a’ and Type is <class ’str’>).

Result: 'condition_a' (<class 'str'>)

Expectation: result = 'condition_a' (<class 'str'>)

B.1.12 Last Transition Condition was

Description

The Module shall have a method for checking if the given condition was the last transition condition.

47 / 58

Unittest for state machine

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of last transition condition(condition a) is correct (Content True and Type is <class ’bool’>).

Result: True (<class 'bool'>)

Expectation: result = True (<class 'bool'>)

Success Returnvalue of last transition condition(condition c) is correct (Content False and Type is <class

’bool’>).

Result: False (<class 'bool'>)

Expectation: result = False (<class 'bool'>)

B.1.13 Previous State

Description

The Module shall have a method for getting the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of previous state() is correct (Content ’state a’ and Type is <class ’str’>).

Result: 'state_a' (<class 'str'>)

Expectation: result = 'state_a' (<class 'str'>)

48 / 58

Unittest for state machine

B.1.14 Previous State was

Description

The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Success Returnvalue of previous state was(state a) is correct (Content True and Type is <class ’bool’>).

Result: True (<class 'bool'>)

Expectation: result = True (<class 'bool'>)

Success Returnvalue of previous state was(state b) is correct (Content False and Type is <class ’bool’>).

Result: False (<class 'bool'>)

Expectation: result = False (<class 'bool'>)

B.1.15 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (± 0.05s).

49 / 58

Unittest for state machine

Testresult

This test was passed with the state: Success.

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.75s

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Success Return Value of previous state duration() is correct (Content 0.7513992786407471 in [0.7 ... 0.8] and

Type is <class ’float’>).

Result: 0.7513992786407471 (<class 'float'>)

Expectation: 0.7 <= result <= 0.8

B.1.16 State change callback for a defined transition and targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition condition and target state.

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and targetstate and at least for one other condition not.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by callback_execution

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 6 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success List of the submitted values for Execution of state machine callback (1) (state b, condition a) identified

by a sequence number is correct (Content [1] and Type is <class ’list’>).

50 / 58

Unittest for state machine

Result: [1] (<class 'list'>)

Expectation: result = [1] (<class 'list'>)

Success List of the submitted values for Execution of state machine callback (2) (state b, condition a) identified

by a sequence number is correct (Content [2] and Type is <class ’list’>).

Result: [2] (<class 'list'>)

Expectation: result = [2] (<class 'list'>)

B.1.17 State change callback for a defined transition

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition condition and all target states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and at least for one other transition condition not.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by callback_execution

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 6 caused by callback_execution

Increasing sequence number to 7 caused by callback_execution

Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success List of the submitted values for Execution of state machine callback (1) (all transitions, condition b)

identified by a sequence number is correct (Content [2, 5] and Type is <class ’list’>).

51 / 58

Unittest for state machine

Result: [2, 5] (<class 'list'>)

Expectation: result = [2, 5] (<class 'list'>)

Success List of the submitted values for Execution of state machine callback (2) (all transitions, condition b)

identified by a sequence number is correct (Content [3, 6] and Type is <class ’list’>).

Result: [3, 6] (<class 'list'>)

Expectation: result = [3, 6] (<class 'list'>)

B.1.18 State change callback for a defined targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transition conditions and a defined target state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion

Methods are called in the registration order after state change with the defined targetstate and at least for one other

targetstate not.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by callback_execution

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 6 caused by callback_execution

Increasing sequence number to 7 caused by callback_execution

Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Success List of the submitted values for Execution of state machine callback (1) (state b, all conditions) identified

by a sequence number is correct (Content [1, 5] and Type is <class ’list’>).

52 / 58

Unittest for state machine

Result: [1, 5] (<class 'list'>)

Expectation: result = [1, 5] (<class 'list'>)

Success List of the submitted values for Execution of state machine callback (2) (state b, all conditions) identified

by a sequence number is correct (Content [2, 6] and Type is <class ’list’>).

Result: [2, 6] (<class 'list'>)

Expectation: result = [2, 6] (<class 'list'>)

B.1.19 State change callback for all kind of state changes

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

Testresult

This test was passed with the state: Success.

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'

Increasing sequence number to 1 caused by sequence progress

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Increasing sequence number to 2 caused by callback_execution

Increasing sequence number to 3 caused by callback_execution

Increasing sequence number to 4 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Increasing sequence number to 5 caused by callback_execution

Increasing sequence number to 6 caused by callback_execution

Increasing sequence number to 7 caused by sequence progress

StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'

Increasing sequence number to 8 caused by callback_execution

Increasing sequence number to 9 caused by callback_execution

Increasing sequence number to 10 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Increasing sequence number to 11 caused by callback_execution

Increasing sequence number to 12 caused by callback_execution

Success List of the submitted values for Execution of state machine callback (1) (all transitions, all conditions)

identified by a sequence number is correct (Content [1, 4, 7, 10] and Type is <class ’list’>).

53 / 58

Unittest for state machine

Result: [1, 4, 7, 10] (<class 'list'>)

Expectation: result = [1, 4, 7, 10] (<class 'list'>)

Success List of the submitted values for Execution of state machine callback (2) (all transitions, all conditions)

identified by a sequence number is correct (Content [2, 5, 8, 11] and Type is <class ’list’>).

Result: [2, 5, 8, 11] (<class 'list'>)

Expectation: result = [2, 5, 8, 11] (<class 'list'>)

C Test-Coverage

C.1 state machine

The line coverage for state machine was 100.0%

The branch coverage for state machine was 100.0%

C.1.1 state machine. init .py

The line coverage for state machine. init .py was 100.0%

The branch coverage for state machine. init .py was 100.0%

1 #!/ u s r / b i n / env python

2 # −*− cod ing : u t f−8 −*−
3 #

4 ”””

5 s t a t e mach i n e (S ta t e Machine)

6 =============================

7

8 **Author :**

9

10 * Dirk A l d e r s <sudo−dirk@mount−mockery . de>

11

12 ** De s c r i p t i o n :**

13

14 This Module h e l p s imp lement ing s t a t e machines .

15

16 **Submodules :**

17

18 * : c l a s s : ` s t a t e mach i n e . s t a t e mach ine `

19

20 ** Un i t t e s t :**

21

22 See a l s o the : download : ` u n i t t e s t <s t a t e mach i n e / t e s t r e s u l t s / u n i t t e s t . pdf>` documentat ion .

23

24 **Module Documentat ion :**

25

26 ”””

27 DEPENDENCIES = []

28

29 impor t l o g g i n g

30 impor t t ime

31

32

54 / 58

Unittest for state machine

33 l ogge r name = 'STATE MACHINE '

34 l o g g e r = l o g g i n g . ge tLogge r (l ogge r name)
35

36

37 INTERPRETER = (2 , 3)
38 ”””The suppo r t ed I n t e r p r e t e r −Ve r s i o n s ”””
39 DESCRIPTION = ””” This Module h e l p s imp lement ing s t a t e machines . ”””
40 ”””The Module d e s c r i p t i o n ”””

41

42

43 c l a s s s t a t e mach i n e (o b j e c t) :
44 ”””

45 : param d e f a u l t s t a t e : The d e f a u l t s t a t e which i s s e t on i n i t i a l i s a t i o n .

46 : param l o g l v l : The l o g l e v e l , t h i s Module l o g s to (s e e Loging−L e v e l s o f Module :mod: ` l o gg i ng

`)

47

48 . . note : : A d d i t i o n a l keyword pa ramete r s w e l l be s t o r e d as v a r i b l e s o f the i n s t a n c e (e . g . to

g i v e v a r i a b l e s o r methods f o r t r a n s i t i o n c o n d i t i o n c a l c u l a t i o n) .

49

50 A s t a t e machine c l a s s can be c r e a t e d by d e r i v i n g i t from t h i s c l a s s . The t r a n s i t i o n s a r e

d e f i n e d by o v e r r i d i n g the v a r i a b l e `TRANSITIONS ` .

51 This V a r i a b l e i s a d i c t i o n a r y , where the key i s the s t a r t−s t a t e and the con t en t i s a t u p l e o r

l i s t o f t r a n s i t i o n s . Each t r a n s i t i o n i s a t u p l e o r l i s t

52 i n c l u d i n g the f o l l o w i n g i n f o rma t i o n : (c ond i t i o n−method (s t r) , t r a n s i t i o n −t ime (number) ,

t a r g e t s t a t e (s t r)) .

53

54 . . note : : The cond i t i o n−method needs to be implemented as pa r t o f the new c l a s s .

55

56 . . note : : I t i s u s e f u l l to d e f i n e the s t a t e s as v a r i a b l e s o f t h i s c l a s s .

57

58

59 **Example :**

60

61 . . l i t e r a l i n c l u d e : : . . / examples / example . py

62

63 . . l i t e r a l i n c l u d e : : . . / examples / example . l o g

64 ”””
65 TRANSITIONS = {}
66 LOG PREFIX = ' StateMach ine : '

67

68 de f i n i t (s e l f , d e f a u l t s t a t e , l o g l v l , ** kwargs) :

69 s e l f . s t a t e = None

70 s e l f . l a s t t r a n s i t i o n c o n d i t i o n = None

71 s e l f . c o n d i t i o n s s t a r t t i m e = {}
72 s e l f . s t a t e c h a n g e c a l l b a c k s = {}
73 s e l f . l o g l v l = l o g l v l

74 s e l f . s e t s t a t e (d e f a u l t s t a t e , ' i n i t ')

75 f o r key i n kwargs :

76 s e t a t t r (s e l f , key , kwargs . ge t (key))
77

78 de f r e g i s t e r s t a t e c h a n g e c a l l b a c k (s e l f , s t a t e , c ond i t i o n , c a l l b a c k , * args , ** kwargs) :
79 ”””

80 : param s t a t e : The t a r g e t s t a t e . The c a l l b a c k w i l l be executed , i f the s t a t e machine

changes to t h i s s t a t e . None means a l l s t a t e s .

81 : t ype s t a t e : s t r

82 : param c o n d i t i o n : The t r a n s i t i o n c o n d i t i o n . The c a l l b a c k w i l l be executed , i f t h i s

c o n d i t i o n i s r e s p o n s i b l e f o r the s t a t e change . None means a l l c o n d i t i o n s .

83 : t ype c o n d i t i o n : s t r

84 : param c a l l b a c k : The c a l l b a c k to be execu ted .

85

86 . . note : : A d d i t i o n a l arguments and keyword pa ramete r s a r e suppo r t ed . These arguments and

pa ramete r s w i l l be used as arguments and pa ramete r s f o r the c a l l b a c k e x e c u t i o n .

87

88 This methods a l l ow s to r e g i s t e r c a l l b a c k s which w i l l be execu t ed on s t a t e changes .

89 ”””

55 / 58

Unittest for state machine

90 i f s t a t e not i n s e l f . s t a t e c h a n g e c a l l b a c k s :

91 s e l f . s t a t e c h a n g e c a l l b a c k s [s t a t e] = {}
92 i f c o n d i t i o n not i n s e l f . s t a t e c h a n g e c a l l b a c k s [s t a t e] :

93 s e l f . s t a t e c h a n g e c a l l b a c k s [s t a t e] [c o n d i t i o n] = []

94 s e l f . s t a t e c h a n g e c a l l b a c k s [s t a t e] [c o n d i t i o n] . append ((c a l l b a c k , a rgs , kwargs))

95

96 de f t h i s s t a t e (s e l f) :

97 ”””

98 : r e t u r n : The c u r r e n t s t a t e .

99

100 This method r e t u r n s the c u r r e n t s t a t e o f the s t a t e machine .

101 ”””

102 r e t u r n s e l f . s t a t e

103

104 de f t h i s s t a t e i s (s e l f , s t a t e) :

105 ”””

106 : param s t a t e : The s t a t e to be checked

107 : t ype s t a t e : s t r

108 : r e t u r n : True i f the g i v en s t a t e i s c u r r e n t l y a c t i v e , e l s e F a l s e .

109 : r t y p e : boo l

110

111 This methods r e t u r n s the boo l ean i n f o rma t i o n i f the s t a t e machine i s c u r r e n t l y i n the

g i v en s t a t e .

112 ”””

113 r e t u r n s e l f . s t a t e == s t a t e

114

115 de f t h i s s t a t e d u r a t i o n (s e l f) :

116 ”””

117 : r e t u r n : The t ime how long the c u r r e n t s t a t e i s a c t i v e .

118 : r t y p e : f l o a t

119

120 This method r e t u r n s the t ime how long the c u r r e n t s t a t e i s a c t i v e .

121 ”””

122 r e t u r n t ime . t ime () − s e l f . t im e s t amp s t a t e c h a n g e

123

124 de f l a s t t r a n s i t i o n c o n d i t i o n (s e l f) :

125 ”””

126 : r e t u r n : The l a s t t r a n s i t i o n c o n d i t i o n .

127 : r t y p e : s t r

128

129 This method r e t u r n s the l a s t t r a n s i t i o n c o n d i t i o n .

130 ”””

131 r e t u r n s e l f . l a s t t r a n s i t i o n c o n d i t i o n

132

133 de f l a s t t r a n s i t i o n c o n d i t i o n w a s (s e l f , c o n d i t i o n) :

134 ”””

135 : param c o n d i t i o n : The c o n d i t i o n to be checked

136 : t ype c o n d i t i o n : s t r

137 : r e t u r n : True i f the g i v en c o n d i t i o n was the l a s t t r a n s i t i o n cond i t i o n , e l s e F a l s e .

138 : r t y p e : boo l

139

140 This methods r e t u r n s the boo l ean i n f o rma t i o n i f the l a s t t r a n s i t i o n c o n d i t i o n i s

e q u i v a l e n t to the g i v en c o n d i t i o n .

141 ”””

142 r e t u r n s e l f . l a s t t r a n s i t i o n c o n d i t i o n == cond i t i o n

143

144 de f p r e v i o u s s t a t e (s e l f) :

145 ”””

146 : r e t u r n : The p r e v i o u s s t a t e .

147 : r t y p e : s t r

148

149 This method r e t u r n s the p r e v i o u s s t a t e o f the s t a t e machine .

150 ”””

56 / 58

Unittest for state machine

151 r e t u r n s e l f . p r e v s t a t e
152

153 de f p r e v i o u s s t a t e w a s (s e l f , s t a t e) :
154 ”””

155 : param s t a t e : The s t a t e to be checked

156 : t ype s t a t e : s t r

157 : r e t u r n : True i f the g i v en s t a t e was p r e v i o u s l y a c t i v e , e l s e F a l s e .

158 : r t y p e : boo l

159

160 This methods r e t u r n s the boo l ean i n f o rma t i o n i f the s t a t e machine was p r e v i o u s l y i n the

g i v en s t a t e .

161 ”””
162 r e t u r n s e l f . p r e v s t a t e == s t a t e
163

164 de f p r e v i o u s s t a t e d u r a t i o n (s e l f) :
165 ”””

166 : r e t u r n : The t ime how long the p r e v i o u s s t a t e was a c t i v e .

167 : r t y p e : f l o a t

168

169 This method r e t u r n s the t ime how long the p r e v i o u s s t a t e was a c t i v e .

170 ”””
171 r e t u r n s e l f . p r e v s t a t e d t
172

173 de f s e t s t a t e (s e l f , t a r g e t s t a t e , c o n d i t i o n) :

174 l o g g e r . l o g (s e l f . l o g l v l , ”%s Sta t e change (%s) : %s −> %s” , s e l f . LOG PREFIX , r e p r (

c o n d i t i o n) , r e p r (s e l f . s t a t e) , r e p r (t a r g e t s t a t e))

175 t imestamp = time . t ime ()

176 s e l f . p r e v s t a t e = s e l f . s t a t e

177 i f s e l f . p r e v s t a t e i s None :

178 s e l f . p r e v s t a t e d t = 0 .
179 e l s e :
180 s e l f . p r e v s t a t e d t = timestamp − s e l f . t im e s t amp s t a t e c h a n g e

181 s e l f . s t a t e = t a r g e t s t a t e

182 s e l f . l a s t t r a n s i t i o n c o n d i t i o n = c o n d i t i o n

183 s e l f . t im e s t amp s t a t e c h a n g e = timestamp

184 s e l f . c o n d i t i o n s s t a r t t i m e = {}
185 f o r c a l l b a c k , a rgs , kwargs i n s e l f . s t a t e c h a n g e c a l l b a c k s . ge t (None , {}) . ge t (None , [])

:

186 c a l l b a c k (* args , ** kwargs)

187 f o r c a l l b a c k , a rgs , kwargs i n s e l f . s t a t e c h a n g e c a l l b a c k s . ge t (t a r g e t s t a t e , {}) . ge t (
None , []) :

188 c a l l b a c k (* args , ** kwargs)

189 f o r c a l l b a c k , a rgs , kwargs i n s e l f . s t a t e c h a n g e c a l l b a c k s . ge t (None , {}) . ge t (c ond i t i o n
, []) :

190 c a l l b a c k (* args , ** kwargs)

191 f o r c a l l b a c k , a rgs , kwargs i n s e l f . s t a t e c h a n g e c a l l b a c k s . ge t (t a r g e t s t a t e , {}) . ge t (
c ond i t i o n , []) :

192 c a l l b a c k (* args , ** kwargs)
193

194 de f work (s e l f) :
195 ”””

196 This Method needs to be execu ted c y c l i c l y to enab l e the s t a t e machine .

197 ”””
198 tm = time . t ime ()

199 t r a n s i t i o n s = s e l f . TRANSITIONS . ge t (s e l f . t h i s s t a t e ())

200 i f t r a n s i t i o n s i s not None :

201 a c t i v e t r a n s i t i o n s = []

202 cnt = 0

203 f o r method name , t r a n s i t i o n d e l a y , t a r g e t s t a t e i n t r a n s i t i o n s :

204 method = g e t a t t r (s e l f , method name)

205 i f method () :

206 i f method name not i n s e l f . c o n d i t i o n s s t a r t t i m e :

207 s e l f . c o n d i t i o n s s t a r t t i m e [method name] = tm

208 i f tm − s e l f . c o n d i t i o n s s t a r t t i m e [method name] >= t r a n s i t i o n d e l a y :

209 a c t i v e t r a n s i t i o n s . append ((t r a n s i t i o n d e l a y − tm + s e l f .

c o n d i t i o n s s t a r t t i m e [method name] , cnt , t a r g e t s t a t e , method name))

57 / 58

Unittest for state machine

210 e l s e :

211 s e l f . c o n d i t i o n s s t a r t t i m e [method name] = tm

212 cnt += 1

213 i f l e n (a c t i v e t r a n s i t i o n s) > 0 :

214 a c t i v e t r a n s i t i o n s . s o r t ()

215 s e l f . s e t s t a t e (a c t i v e t r a n s i t i o n s [0] [2] , a c t i v e t r a n s i t i o n s [0] [3])

58 / 58

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 2.7.17 (final)
	Test-Statistic for testrun with python 3.6.9 (final)
	Coverage Statistic

	Tested Requirements
	Module Initialisation
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments

	Transition Changes
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation

	Module Interface
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration

	Transition Callbacks
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes

	Trace for testrun with python 2.7.17 (final)
	Tests with status Info (19)
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes

	Trace for testrun with python 3.6.9 (final)
	Tests with status Info (19)
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes

	Test-Coverage
	 state_machine
	 state_machine.__init__.py

