Unittest for state_machine

January 14, 2021

Unittest for state_machine

Contents
(1 Test Information| 4
L1 Test Candidate Informationl 4
1.2 Unittest Informationl 4
1.3 Test System Information| 4
[2—Statistid 4
2.1 Test-Statistic for testrun with python 2.7.18 (final)l 4
.2 Test-Statistic for testrun with python 3.8.5 (final)] 5
2.3 Coverage Statistic] 5
[3 Tested Requirements| 6
3.1 Module Initialisationl 6
BI11 DefaultStatel 6
B.1.2 Default [ast Transition Condtion] 6
B.13 Default Previous Statel 7
[3.1.4 Additional Keyword Arguments|. L 8
3.2 Transition Changes| e 9
3.21 Transitiondefinition and -flow| 9
13.2.2 Transitiontiming] 11
13.2.3 Transitionpriorisation| L 12
B3 Module Interfacel. 13
B3I ThisState 13
332 ThisStateisl. 14
3.3.3 This State Durationl o 15
3.3.4 Last Transition Condition| 15
3.3.5 last Transition Condition was| 16
B3.6 Previous Statel 17
B37 PreviousStatewasl 18
338 Previous State Duration]. 19
3.4 Transition Callbacksl 20

Unittest for state_machine

I3.4.1 State change callback for a defined transition and targetstate]. 20
13.4.2 State change callback for a defined transition| 21
|3.4.3 State change callback for a defined targetstate] 22
I3.4.4 State change callback for all kind of state changes| 23
B.45 Execution order of Callbacks| 24
[A" Trace for testrun with python 2.7.18 (final)| 26
[A.1 Tests with status Info (20)] 26
ALl Default Statel 26
IA.12 Default last Transition Condtion| 26
IA.13 Default Previous Statel 27
|A.1.4 Additional Keyword Arguments| 27
[A15 Transitiondefinition and -flowl oo 28
JALL6 Transitiontiming e 29
JA.L.7 Transitionpriorisation| L 31
IALS8 This Statel o 32
[AT9 ThisStateisl. 32
IA.L10 This State Durationl oL 33
IA.111 Last Transition Condition| 33
[A112 Tast Transition Condition wasl 34
[AI13 Previous Statel 35
[A114 Previous Statewasl 35
[A1I5 Previous State Durationl. 36
|A.1.16 State change callback for a defined transition and targetstate]. 36
|A.1.17 State change callback for a defined transition| 38
|A.1.18 State change callback for a defined targetstate] 39
IA.1.19 State change callback for all kind of state changes| 40
[A1.20 Execution order of Callbacks| 0 42

2/

Unittest for state_machine

[B Trace for testrun with python 3.8.5 (final)| 44
[B.1 Tests with status Info (20)] 44
B.11 Default Statel 44
B.1.2 Default Last Transition Condtionl 44
IB.1.3 Default Previous Statel 45
IB.1.4 Additional Keyword Arguments| 45
B.15 Transitiondefinition and -flowlo oo 46
IB.1.6 Transitiontiming| e 47
IB.1.7 Transitionpriorisation| e 49
B.1.8 This Statel o 50
BI9 ThisStateisl. 50
B.1.10 This State Durationlo 51
[B.1.11 [ast Transition Condition| L 51
B.112 [ast Transition Condition wasl 52
B.113 Previous Statel 53
B.I114 Previous State wasl 53
B.1.15 Previous State Duration]. 54
IB.1.16 State change callback for a defined transition and targetstate]. 54
IB.1.17 State change callback for a defined transition| 56
IB.1.18 State change callback for a defined targetstate], 57
IB.1.19 State change callback for all kind of state changes| 58
B.1.20 Execution order of Callbacks| 60

[C Test-Coverage| 62
IC.1 statemachine | 62
IC.1.1 statemachine.__init__.py | 62

3/ 66

Unittest for state_machine

1 Test Information

1.1 Test Candidate Information

This Module helps implementing state machines.

Library Information

Name
State

Supported Interpreters

Version

state_machine

Released

python2, python3
f0888b702a36dcafbc48cab5d887f4dd

Dependencies

1.2 Unittest Information

Unittest Information

Version
Testruns with

88eb21720b062b30078e96dd6204ccdd
python 2.7.18 (final), python 3.8.5 (final)

1.3 Test System Information

System Information

Architecture 64bit
Distribution Linux Mint 20.1 ulyssa
Hostname ahorn
Kernel 5.4.0-60-generic (#67-Ubuntu SMP Tue Jan 5 18:31:36 UTC 2021)
Machine x86_64
Path /user_data/data/dirk/prj/unittest/state_machine/unittest
System Linux
Username dirk
2 Statistic
2.1
Number of tests 20
Number of successfull tests 20

Number of possibly failed tests 0

Number of failed tests

0

Executionlevel

Time consumption

Full Test (all defined tests)
1.656s

4/

Unittest for state_machine

2.2
Number of tests 20
Number of successfull tests 20

Number of possibly failed tests 0

Number of failed tests 0
Executionlevel Full Test (all defined tests)
Time consumption 1.650s

2.3 Coverage Statistic

Module- or Filename Line-Coverage Branch-Coverage

state_machine 100.0% 100.0%
state machine.__init__.py 100.0%

5/[6q

Unittest for state_machine

3 Tested Requirements

3.1 Module Initialisation

3.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

State machine is in the initial state after initialisation.

Testresult
This test was passed with the state: . See also full trace in section [A.1.7]
Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (22)
Start-Time: 2021-01-14 01:07:00,075
Finished-Time: 2021-01-14 01:07:00,075
Time-Consumption 0.000s
Testsummary:
Info Initialising the state machine with state_c
State after initialisation is correct (Content 'state ¢’ and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.1]
Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (22)
Start-Time: 2021-01-14 01:07:02,144
Finished-Time: 2021-01-14 01:07:02,145
Time-Consumption 0.001s
Testsummary:
Info Initialising the state machine with state_c

State after initialisation is correct (Content 'state_c' and Type is <class 'str'>).

3.1.2 Default Last Transition Condtion

Description

The state machine shall return the string __init__ for last transition condition after initalisation.

6/[6q

Reason for the implementation

Unittest for state_machine

Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is __init__ after initialisation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.2]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (23)

Start-Time: 2021-01-14 01:07:00,075

Finished-Time: 2021-01-14 01:07:00,076

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c
Last transition condition after initialisation is correct (Content '__init__' and Type is <type
'str’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.2]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (23)
Start-Time: 2021-01-14 01:07:02,145

Finished-Time: 2021-01-14 01:07:02,145

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c

Last transition condition after initialisation is correct (Content '__init__" and Type is <class

'str'>).

3.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

7/

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [A.1.3]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (24)

Start-Time: 2021-01-14 01:07:00,076

Finished-Time: 2021-01-14 01:07:00,076

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c

Last state after initialisation is correct (Content None and Type is <type 'NoneType'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.3]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (24)
Start-Time: 2021-01-14 01:07:02,145

Finished-Time: 2021-01-14 01:07:02,145

Time-Consumption 0.000s

Testsummary:

Info Initialising the state machine with state_c

Last state after initialisation is correct (Content None and Type is <class 'NoneType'>).

3.1.4 Additional Keyword Arguments

Description

The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation

Store further information (e.g. for calculation of the transition conditions).

Fitcriterion

At least two given keyword arguments with different types are available after initialisation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.4]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 2.7.18 (final)
/user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (25)
2021-01-14 01:07:00,076

2021-01-14 01:07:00,077

0.001s

8/1pq

Unittest for state_machine

Testsummary:
Info Initialising the state machine with state_c
Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": 'two'}
and Type is <type 'dict'>).
Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <type
'int’>).
Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is
<type 'bool">).
Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2' and Type is
<type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.4]
Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (25)
Start-Time: 2021-01-14 01:07:02,146
Finished-Time: 2021-01-14 01:07:02,146
Time-Consumption 0.001s
Testsummary:
Info Initialising the state machine with state_c

Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <class
'int'>).

Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2' and Type is
<class 'str'>).

Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is
<class 'bool'>).

Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": "two'}
and Type is <class 'dict’>).

3.2 Transition Changes
3.2.1 Transitiondefinition and -flow

Description

The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start
state, a target state and a transition condition. The transition condition shall be a method, where the user is able to
calculate the condition on demand.

Reason for the implementation
Definition of the transitions for a state machine.

Fitcriterion

The order of at least three state changes is correct.

9/}6q

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [A.1.5]

Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (28)
Start-Time: 2021-01-14 01:07:00,077
Finished-Time: 2021-01-14 01:07:00,078
Time-Consumption 0.001s
Testsummary:
Info Initialising state machine with state_a
Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).
Info Work routine executed the 1st time to do the state change. Defined Transitions are:
True—state_b (0.0s); False—state_c (0.0s)
State after 1st execution of work method is correct (Content 'state_b’ and Type is <type 'str'>).
Info Work routine executed the 2nd time to do the state change. Defined Transitions are:
False—state_a (0.0s); True—sstate_c (0.0s)
State after 2nd execution of work method is correct (Content 'statec’ and Type is <type
'str'>).
Info Work routine executed the 3rd time with no effect. No Transitions starting from state_c (dead
end)
State after 3rd execution of work method is correct (Content 'state_c’ and Type is <type 'str'>).
Testresult

This test was passed with the state:

. See also full trace in section [B.1.5]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (28)

Start-Time: 2021-01-14 01:07:02,146

Finished-Time: 2021-01-14 01:07:02,147

Time-Consumption 0.001s

Testsummary:

Info Initialising state machine with state_a
Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str’>).

Info Work routine executed the 1st time to do the state change. Defined Transitions are:
True—state_b (0.0s); False—state_c (0.0s)
State after 1st execution of work method is correct (Content 'state_b’ and Type is <class
'str’>).

Info Work routine executed the 2nd time to do the state change. Defined Transitions are:
False—state_a (0.0s); True—state_c (0.0s)
State after 2nd execution of work method is correct (Content 'state_c’ and Type is <class
'str'>).

Info Work routine executed the 3rd time with no effect. No Transitions starting from state_c (dead
end)

State after 3rd execution of work method is correct (Content 'state_c’ and Type is <class
'str'>).

10/ [64]

Unittest for state_machine

3.2.2 Transitiontiming

Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

Reason for the implementation

Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion

The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (£0.05s).

Testresult

This test was passed with the state:

. See also full trace in section [A.1.6]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (29)

Start-Time: 2021-01-14 01:07:00,078

Finished-Time: 2021-01-14 01:07:00,459

Time-Consumption 0.381s

Testsummary:

Info Initialising state machine with state_a
Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).

Info Waiting for 0.160s or state change
State after 1st cycle is correct (Content 'state_b’ and Type is <type 'str'>).
Transition time after 1st cycle is correct (Content 0.15072107315063477 in [0.145 ... 0.155]
and Type is <type 'float’>).

Info Waiting for 0.235s or state change
State after 2nd cycle is correct (Content 'state_c’ and Type is <type 'str'>).
Transition time after 2nd cycle is correct (Content 0.15036487579345703 in [0.145 ... 0.155]
and Type is <type 'float’>).
Previous state duration is correct (Content 0.22558188438415527 in [0.21999999999999997 ...
0.22999999999999998] and Type is <type 'float’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.6]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (29)
Start-Time: 2021-01-14 01:07:02,147

Finished-Time: 2021-01-14 01:07:02,526

Time-Consumption 0.379s

Testsummary:

Info Initialising state machine with state_a

11/

Unittest for state_machine

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).
Info Waiting for 0.160s or state change
State after 1st cycle is correct (Content 'state_b’ and Type is <class 'str'>).
Transition time after 1st cycle is correct (Content 0.15063071250915527 in [0.145 ... 0.155]

and Type is <class 'float'>).
Info Waiting for 0.235s or state change

State after 2nd cycle is correct (Content 'state_c’ and Type is <class 'str'>).
Transition time after 2nd cycle is correct (Content 0.15029430389404297 in [0.145 ... 0.155]

and Type is <class 'float'>).
Previous state duration is correct (Content 0.22559070587158203 in [0.21999999999999997 ...

0.22999999999999998] and Type is <class 'float>).

3.2.3 Transitionpriorisation

Description
The state machine shall use the first active transition. If multiple transition are active, the transition with the highest
overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion
At least one transition with at least two active conditions results in the expected state change.

Testresult
This test was passed with the state: . See also full trace in section [A.1.7]
Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (30)
Start-Time: 2021-01-14 01:07:00,459
Finished-Time: 2021-01-14 01:07:00,704
Time-Consumption 0.245s
Testsummary:
Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to
state_c after 0.150s
Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).
Info Waiting for 0.300s or state change
State after 1st cycle is correct (Content 'state_c’ and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.7]
Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (30)
Start-Time: 2021-01-14 01:07:02,526

12/

Unittest for state_machine

Finished-Time: 2021-01-14 01:07:02,769

Time-Consumption 0.243s

Testsummary:

Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to
state_c after 0.150s
Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Info Waiting for 0.300s or state change

State after 1st cycle is correct (Content 'state_c’ and Type is <class 'str'>).

3.3 Module Interface

3.3.1 This State

Description

The Module shall have a method for getting the current state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.8]

Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (33)
Start-Time: 2021-01-14 01:07:00,705
Finished-Time: 2021-01-14 01:07:00,706
Time-Consumption 0.001s
Testsummary:
Info Initialising the state machine with state_c
Returnvalue of this_state() is correct (Content 'state_c’ and Type is <type 'str'>).
Testresult

This test was passed with the state:

. See also full trace in section [B1.8]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.8.5 (final)
/user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (33)
2021-01-14 01:07:02,769

2021-01-14 01:07:02,770

0.001s

Testsummary:

13 /[64]

Info

Unittest for state_machine

Initialising the state machine with state_c

Returnvalue of this_state() is correct (Content 'state_c’ and Type is <class 'str'>).

3.3.2 This State is

Description

The Module shall have a method for checking if the given state is currently active.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.9]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (34)

Start-Time: 2021-01-14 01:07:00,706

Finished-Time: 2021-01-14 01:07:00,708

Time-Consumption 0.002s

Testsummary:

Info Initialising the state machine with state_c
Returnvalue of this_state_is(state_c) is correct (Content True and Type is <type 'bool">).
Returnvalue of this_state_is(state_b) is correct (Content False and Type is <type 'bool">).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.9]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (34)
Start-Time: 2021-01-14 01:07:02,770

Finished-Time: 2021-01-14 01:07:02,771

Time-Consumption 0.001s

Testsummary:

Info Initialising the state machine with state_c

Returnvalue of this_state_is(state_c) is correct (Content True and Type is <class 'bool">).

Returnvalue of this_state_is(state_b) is correct (Content False and Type is <class 'bool">).

14/

Unittest for state_machine

3.3.3 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the current state duration (£ 0.05s).

Testresult

This test was passed with the state:

. See also full trace in section [A.1.10]

Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (35)
Start-Time: 2021-01-14 01:07:00,709
Finished-Time: 2021-01-14 01:07:00,961
Time-Consumption 0.252s
Testsummary:
Info Running state machine test sequence.
Return Value of this_state_duration() is correct (Content 0.25125598907470703 in [0.2 ... 0.3]
and Type is <type 'float’>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.10]
Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (35)
Start-Time: 2021-01-14 01:07:02,771
Finished-Time: 2021-01-14 01:07:03,023
Time-Consumption 0.252s
Testsummary:
Info Running state machine test sequence.
Return Value of this_state_duration() is correct (Content 0.25093817710876465 in [0.2 ... 0.3]

and Type is <class 'float'>).

3.3.4 Last Transition Condition

Description

The Module shall have a method for getting the last transition condition.

15/

Reason for the implementation

Comfortable user interface.

Fitcriterion

Unittest for state_machine

At least one returned transition condition fits to the expectation.

Testresult

This test was passed with the state:

. See also full trace in section [A.I.11]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (36)

Start-Time: 2021-01-14 01:07:00,961

Finished-Time: 2021-01-14 01:07:00,963

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.
Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <type
'str’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.11]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (36)
Start-Time: 2021-01-14 01:07:03,023

Finished-Time: 2021-01-14 01:07:03,024

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <class

'str'>).

3.3.5 Last Transition Condition was

Description

The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

16 / [64]

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [A.1.12]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (37)

Start-Time: 2021-01-14 01:07:00,963

Finished-Time: 2021-01-14 01:07:00,965

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.
Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <type
'bool">).
Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is <type
'bool’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.12]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (37)
Start-Time: 2021-01-14 01:07:03,024

Finished-Time: 2021-01-14 01:07:03,026

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <class
'bool’>).

Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is
<class 'bool">).

3.3.6 Previous State

Description

The Module shall have a method for getting the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.13]

17/

Unittest for state_machine

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (38)

Start-Time: 2021-01-14 01:07:00,966

Finished-Time: 2021-01-14 01:07:00,968

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.13]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (38)
Start-Time: 2021-01-14 01:07:03,026

Finished-Time: 2021-01-14 01:07:03,027

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <class 'str'>).

3.3.7 Previous State was

Description

The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.14]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (39)
Start-Time: 2021-01-14 01:07:00,968

Finished-Time: 2021-01-14 01:07:00,970

Time-Consumption 0.002s

Testsummary:

Info Running state machine test sequence.

18 /[64]

Unittest for state_machine

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <type 'bool'>).

Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <type 'bool'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.14]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (39)
Start-Time: 2021-01-14 01:07:03,027

Finished-Time: 2021-01-14 01:07:03,028

Time-Consumption 0.001s

Testsummary:

Info Running state machine test sequence.

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <class 'bool’>).
Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <class
'bool’>).

3.3.8 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (4 0.05s).

Testresult

This test was passed with the state:

. See also full trace in section [A.1.15]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (40)

Start-Time: 2021-01-14 01:07:00,970

Finished-Time: 2021-01-14 01:07:01,723

Time-Consumption 0.752s

Testsummary:

Info Running state machine test sequence.
Return Value of previous_state_duration() is correct (Content 0.7513411045074463 in [0.7 ...
0.8] and Type is <type 'float'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.15]

19 /[64]

Unittest for state_machine

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (40)
Start-Time: 2021-01-14 01:07:03,029

Finished-Time: 2021-01-14 01:07:03,781

Time-Consumption 0.753s

Testsummary:

Info Running state machine test sequence.

Return Value of previous_state_duration() is correct (Content 0.7514586448669434 in [0.7 ...
0.8] and Type is <class 'float'>).

3.4 Transition Callbacks

3.4.1 State change callback for a defined transition and targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined set of transition_condition and target_state.

Reason for the implementation

Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and targetstate and at least for one other condition not.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.16]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (43)

Start-Time: 2021-01-14 01:07:01,723

Finished-Time: 2021-01-14 01:07:01,726

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback
Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Testresult

This test was passed with the state:

. See also full trace in section [B.1.16]

20 / [66]

Unittest for state_machine

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (43)
Start-Time: 2021-01-14 01:07:03,782

Finished-Time: 2021-01-14 01:07:03,786

Time-Consumption 0.004s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

3.4.2 State change callback for a defined transition

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition_condition and all target_states.

Reason for the implementation

Triggering state change actions for a specific transition condition.

Fitcriterion

Methods are called in the registration order after state change with all user given arguments for the defined transition

condition and at least for one other transition condition not.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.17]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (44)
Start-Time: 2021-01-14 01:07:01,726

Finished-Time: 2021-01-14 01:07:01,729

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all-transitions, condition_b) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

21/

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [B.1.17]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (44)
Start-Time: 2021-01-14 01:07:03,786

Finished-Time: 2021-01-14 01:07:03,789

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all_transitions, condition_b) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

3.4.3 State change callback for a defined targetstate

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transition_conditions and a defined target_state.

Reason for the implementation

Triggering state change actions for a specific targetstate.

Fitcriterion

Methods are called in the registration order after state change with the defined targetstate and at least for one other

targetstate not.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.18]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (45)
Start-Time: 2021-01-14 01:07:01,729

Finished-Time: 2021-01-14 01:07:01,733

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.

22/

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [B.1.18]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (45)
Start-Time: 2021-01-14 01:07:03,790

Finished-Time: 2021-01-14 01:07:03,793

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.
Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence num-

ber: Values and number of submitted values is correct. See detailed log for more information.

3.4.4 State change callback for all kind of state changes

Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

Reason for the implementation

Triggering state change actions for all transition conditions and targetstates.

Fitcriterion

Methods are called in the registration order after state change.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.19]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (46)
Start-Time: 2021-01-14 01:07:01,733

Finished-Time: 2021-01-14 01:07:01,735

Time-Consumption 0.003s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

23/ [66]

Testresult

This test was passed with the state:

Unittest for state_machine

. See also full trace in section [B.1.19]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (46)
Start-Time: 2021-01-14 01:07:03,793

Finished-Time: 2021-01-14 01:07:03,797

Time-Consumption 0.004s

Testsummary:

Info Running state machine sequence and storing sequence number for each callback

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence
number: Values and number of submitted values is correct. See detailed log for more informa-

tion.
Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence

number: Values and number of submitted values is correct. See detailed log for more informa-

tion.

3.4.5 Execution order of Callbacks

Description

The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation

User shall have the control about the execution order.

Fitcriterion

A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had

been regestered first.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.20]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (47)

Start-Time: 2021-01-14 01:07:01,736

Finished-Time: 2021-01-14 01:07:01,737

Time-Consumption 0.001s

Testsummary:
Callback execution order: Values and number of submitted values is correct. See detailed log
for more information.

Testresult

This test was passed with the state:

. See also full trace in section [B.1.20]

24/

Unittest for state_machine

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.8.5 (final)
/user_data/data/dirk/prj/unittest/state_machine/unittest/src/tests/__init__.py (47)
2021-01-14 01:07:03,797

2021-01-14 01:07:03,798

0.001s

Testsummary:

Callback execution order: Values and number of submitted values is correct. See detailed log

for more information.

25/ [64]

Unittest for state_machine

A Trace for testrun with python 2.7.18 (final)

A.1 Tests with status Info (20)
A.1.1 Default State

Description

The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion
State machine is in the initial state after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

State after initialisation is correct (Content 'state_c’ and Type is <type 'str'>).

Result (State after initialisation): 'state_c' (<type 'str'>)

Expectation (State after initialisation): result = 'state_c' (<type 'str'>)
A.1.2 Default Last Transition Condtion

Description
The state machine shall return the string __init__ for last transition condition after initalisation.

Reason for the implementation
Creation of a defined state after initialisation.

Fitcriterion

The last transition condition is __init__ after initialisation.

26/

Unittest for state_machine

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last transition condition after initialisation is correct (Content '__init__" and Type is <type 'str'>).

Result (Last transition condition after initialisation): '__init__' (<type 'str'>)

Expectation (Last transition condition after initialisation): result = '__init__'
- 'str'>)

A.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last state after initialisation is correct (Content None and Type is <type 'NoneType'>).

Result (Last state after initialisation): None (<type 'NoneType'>)

Expectation (Last state after initialisation): result = None (<type 'NoneType'>)
A.1.4 Additional Keyword Arguments

Description
The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation
Store further information (e.g. for calculation of the transition conditions).

27/

Unittest for state_machine

Fitcriterion
At least two given keyword arguments with different types are available after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": "two'} and Type
is <type 'dict'>).

Result (Keyword argument kw_arg no_4 stored in state_machine): { '1': 1, '2': 'two' } (<type
— 'dict'>)

Expectation (Keyword argument kw_arg no_4 stored in state_machine): result = { '1': 1, '2':
- ‘'two' } (<type 'dict'>)

Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <type 'int’>).

Result (Keyword argument kw_arg no_1 stored in state_machine): 1 (<type 'int'>)

Expectation (Keyword argument kw_arg no_1 stored in state_machine): result = 1 (<type 'int'>)

Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is <type
'bool’>).

Result (Keyword argument kw_arg no_3 stored in state_machine): True (<type 'bool'>)

Expectation (Keyword argument kw_arg_no_3 stored in state_machine): result = True (<type
— 'bool'>)

Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2" and Type is <type 'str’>).

Result (Keyword argument kw_arg no_2 stored in state_machine): '2' (<type 'str'>)

Expectation (Keyword argument kw_arg _no_2 stored in state_machine): result = '2' (<type
s 'Str'>)

A.1.5 Transitiondefinition and -flow
Description
The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation
Definition of the transitions for a state machine.

28 /

Unittest for state_machine

Fitcriterion
The order of at least three state changes is correct.

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).

Result (Initial state after Initialisation): 'state_a' (<type 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<type 'str'>)

Inffo Work routine executed the 1st time to do the state change. Defined Transitions are: True—state_b (0.0s);
False—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

State after 1st execution of work method is correct (Content 'state_b’ and Type is <type 'str'>).

Result (State after 1st execution of work method): 'state_b' (<type 'str'>)

Expectation (State after 1st execution of work method): result = 'state_b' (<type 'str'>)

Inffo Work routine executed the 2nd time to do the state change. Defined Transitions are: False—state_a (0.0s);
True—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd execution of work method is correct (Content 'state_c’ and Type is <type 'str'>).

Result (State after 2nd execution of work method): 'state_c' (<type 'str'>)

Expectation (State after 2nd execution of work method): result = 'state_c' (<type 'str'>)

Info Work routine executed the 3rd time with no effect. No Transitions starting from state_c (dead end)

State after 3rd execution of work method is correct (Content 'state_c’ and Type is <type 'str’>).

Result (State after 3rd execution of work method): 'state_c' (<type 'str'>)

Expectation (State after 3rd execution of work method): result = 'state_c' (<type 'str'>)
A.1.6 Transitiontiming
Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the

transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

29 /

Unittest for state_machine

Reason for the implementation
Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion
The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (£0.05s).

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).

Result (Initial state after Initialisation): 'state_a' (<type 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<type 'str'>)

Info Waiting for 0.160s or state change

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

State after 1st cycle is correct (Content 'state_b’ and Type is <type 'str'>).

Result (State after 1st cycle): 'state_b' (<type 'str'>)
Expectation (State after 1st cycle): result = 'state_b' (<type 'str'>)

Transition time after 1st cycle is correct (Content 0.15072107315063477 in [0.145 ... 0.155] and Type is
<type 'float'>).

Result (Transition time after 1st cycle): 0.15072107315063477 (<type 'float'>)

Expectation (Transition time after 1st cycle): 0.145 <= result <= 0.155

Info Waiting for 0.235s or state change

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd cycle is correct (Content 'state_c’ and Type is <type 'str'>).

Result (State after 2nd cycle): 'state_c' (<type 'str'>)
Expectation (State after 2nd cycle): result = 'state_c' (<type 'str'>)

Transition time after 2nd cycle is correct (Content 0.15036487579345703 in [0.145 ... 0.155] and Type
is <type 'float'>).

Result (Transition time after 2nd cycle): 0.15036487579345703 (<type 'float'>)

30/

Unittest for state_machine

Expectation (Transition time after 2nd cycle): 0.145 <= result <= 0.155

Previous state duration is correct (Content 0.22558188438415527 in [0.21999999999999997
0.22999999999999998] and Type is <type 'float’>).

Result (Previous state duration): 0.22558188438415527 (<type 'float'>)
Expectation (Previous state duration): 0.21999999999999997 <= result <= 0.22999999999999998

A.1.7 Transitionpriorisation

Description
The state machine shall use the first active transition. If multiple transition are active, the transition with the highest
overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion
At least one transition with at least two active conditions results in the expected state change.

Testresult
This test was passed with the state:

Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to state_c after
0.150s

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <type 'str'>).

Result (Initial state after Initialisation): 'state_a' (<type 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<type 'str'>)

Info Waiting for 0.300s or state change

Executing method work after 0.000s
Executing method work after 0.060s
Executing method work after 0.121s
Executing method work after 0.182s

StateMachine: State change ('condition_true'): 'state_a' -> 'state_c'

State after 1st cycle is correct (Content 'state_c’ and Type is <type 'str'>).

Result (State after 1st cycle): 'state_c' (<type 'str'>)

Expectation (State after 1st cycle): result = 'state_c' (<type 'str'>)

31/

Unittest for state_machine

A.1.8 This State

Description
The Module shall have a method for getting the current state.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state() is correct (Content 'state_c’ and Type is <type 'str'>).

Result (Returnvalue of this_state()): 'state_c' (<type 'str'>)

Expectation (Returnvalue of this_state()): result = 'state_c' (<type 'str'>)

A.1.9 This State is

Description

The Module shall have a method for checking if the given state is currently active.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state_is(state_c) is correct (Content True and Type is <type 'bool'>).

Result (Returnvalue of this_state_is(state_c)): True (<type 'bool'>)

32/

Unittest for state_machine

Expectation (Returnvalue of this_state_is(state_c)): result = True (<type 'bool'>)

Returnvalue of this_state_is(state_b) is correct (Content False and Type is <type 'bool'>).

Result (Returnvalue of this_state_is(state_b)): False (<type 'bool'>)

Expectation (Returnvalue of this_state_is(state_b)): result = False (<type 'bool'>)

A.1.10 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion
At least one returned duration fits to the current state duration (£ 0.05s).

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.25s

Return Value of this_state_duration() is correct (Content 0.25125598907470703 in [0.2 ... 0.3] and Type
is <type 'float'>).

Result (Return Value of this_state_duration()): 0.25125598907470703 (<type 'float'>)

Expectation (Return Value of this_state_duration()): 0.2 <= result <= 0.3
A.1.11 Last Transition Condition

Description
The Module shall have a method for getting the last transition condition.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least one returned transition condition fits to the expectation.

33/

Unittest for state_machine

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <type 'str'>).

Result (Returnvalue of last_transition_condition()): 'condition_a' (<type 'str'>)

Expectation (Returnvalue of last_transition_condition()): result = 'condition_a' (<type
- 'str'>)

A.1.12 Last Transition Condition was

Description
The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <type 'bool’>).

Result (Returnvalue of last_transition_condition(condition_a)): True (<type 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_a)): result = True (<type
< 'bool'>)

Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is <type 'bool’>).

Result (Returnvalue of last_transition_condition(condition_c)): False (<type 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_c)): result = False (<type
< 'bool'>)

34/

Unittest for state_machine

A.1.13 Previous State

Description
The Module shall have a method for getting the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least one returend state fits to the expecation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <type 'str'>).

Result (Returnvalue of previous_state()): 'state_a' (<type 'str'>)

Expectation (Returnvalue of previous_state()): result = 'state_a' (<type 'str'>)

A.1.14 Previous State was

Description
The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

35/

Unittest for state_machine

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <type 'bool'>).

Result (Returnvalue of previous_state_was(state_a)): True (<type 'bool'>)

Expectation (Returnvalue of previous_state_was(state_a)): result = True (<type 'bool'>)

Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <type 'bool'>).

Result (Returnvalue of previous_state_was(state_b)): False (<type 'bool'>)

Expectation (Returnvalue of previous_state_was(state_b)): result = False (<type 'bool'>)

A.1.15 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (£ 0.05s).

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Waiting for 0.75s

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Return Value of previous_state_duration() is correct (Content 0.7513411045074463 in [0.7 ... 0.8] and
Type is <type 'float'>).

Result (Return Value of previous_state_duration()): 0.7513411045074463 (<type 'float'>)

Expectation (Return Value of previous_state_duration()): 0.7 <= result <= 0.8
A.1.16 State change callback for a defined transition and targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments
for a defined set of transition_condition and target_state.

36 /

Unittest for state_machine

Reason for the implementation
Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion
Methods are called in the registration order after state change with all user given arguments for the defined transition
condition and targetstate and at least for one other condition not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Increasing sequence number to 6 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, condition_a) identified by a

— sequence number): [1] (<type 'list'>)

Expectation (Execution of state machine callback (1) (state_b, condition_a) identified by a
< sequence number): result = [1] (<type 'list'>)

Result (Submitted value number 1): 1 (<type 'int'>)

Expectation (Submitted value number 1): result = 1 (<type 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <type 'int'>).

Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, condition_a) identified by a

— sequence number): [2] (<type 'list'>)

Expectation (Execution of state machine callback (2) (state_b, condition_a) identified by a
— sequence number): result = [2] (<type 'list'>)

Result (Submitted value number 1): 2 (<type 'int'>)

Expectation (Submitted value number 1): result = 2 (<type 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).

37/ 169

Unittest for state_machine

A.1.17 State change callback for a defined transition

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition_condition and all target_states.

Reason for the implementation
Triggering state change actions for a specific transition condition.

Fitcriterion
Methods are called in the registration order after state change with all user given arguments for the defined transition
condition and at least for one other transition condition not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Increasing sequence number to 2 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 4 caused by callback_execution
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (all_transitions, condition_b) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, condition_b) identified by

— a sequence number): [2, 5] (<type 'list'>)

Expectation (Execution of state machine callback (1) (all_transitions, condition_b)

- identified by a sequence number): result = [2, 5] (<type 'list'>)

Result (Submitted value number 1): 2 (<type 'int'>)

38/

Unittest for state_machine

Expectation (Submitted value number 1): result = 2 (<type 'int'>)
Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).
Result (Submitted value number 2): 5 (<type 'int'>)

Expectation (Submitted value number 2): result = 5 (<type 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <type 'int'>).

Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, condition_b) identified by

< a sequence number): [3, 6] (<type 'list'>)

Expectation (Execution of state machine callback (2) (all_transitions, condition_b)
— identified by a sequence number): result = [3, 6] (<type 'list'>)

Result (Submitted value number 1): 3 (<type 'int'>)

Expectation (Submitted value number 1): result = 3 (<type 'int'>)

Submitted value number 1 is correct (Content 3 and Type is <type 'int'>).

Result (Submitted value number 2): 6 (<type 'int'>)

Expectation (Submitted value number 2): result = 6 (<type 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <type 'int'>).

A.1.18 State change callback for a defined targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments
for all transition_conditions and a defined target_state.

Reason for the implementation
Triggering state change actions for a specific targetstate.

Fitcriterion
Methods are called in the registration order after state change with the defined targetstate and at least for one other
targetstate not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

39/

Unittest for state_machine

Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence number: Values
and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, all_conditions) identified by a

— sequence number): [1, 5] (<type 'list'>)

Expectation (Execution of state machine callback (1) (state_b, all_conditions) identified by
— a sequence number): result = [1, 5] (<type 'list'>)

Result (Submitted value number 1): 1 (<type 'int'>)

Expectation (Submitted value number 1): result = 1 (<type 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <type 'int'>).

Result (Submitted value number 2): 5 (<type 'int'>)

Expectation (Submitted value number 2): result = 5 (<type 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <type 'int'>).

Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, all_conditions) identified by a

- sequence number): [2, 6] (<type 'list'>)

Expectation (Execution of state machine callback (2) (state_b, all_conditions) identified by
— a sequence number): result = [2, 6] (<type 'list'>)

Result (Submitted value number 1): 2 (<type 'int'>)

Expectation (Submitted value number 1): result = 2 (<type 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).

Result (Submitted value number 2): 6 (<type 'int'>)

Expectation (Submitted value number 2): result = 6 (<type 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <type 'int'>).
A.1.19 State change callback for all kind of state changes
Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

40 / 66

Unittest for state_machine

Reason for the implementation
Triggering state change actions for all transition conditions and targetstates.

Fitcriterion
Methods are called in the registration order after state change.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 5 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Increasing sequence number to 7 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 8 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 9 caused by callback_execution
Increasing sequence number to 10 caused by sequence progress
StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 11 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 12 caused by callback_execution

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, all_conditions) identified

— by a sequence number): [1, 4, 7, 10] (<type 'list'>)

41/ 166

Unittest for state_machine

Expectation (Execution of state machine callback (1) (all_transitions, all_conditions)

— identified by a sequence number): result = [1, 4, 7, 10] (<type 'list'>)

Result (Submitted value number 1): 1 (<type 'int'>)

Expectation (Submitted value number 1): result = 1 (<type 'int'>)
Submitted value number 1 is correct (Content 1 and Type is <type 'int'>).
Result (Submitted value number 2): 4 (<type 'int'>)

Expectation (Submitted value number 2): result = 4 (<type 'int'>)
Submitted value number 2 is correct (Content 4 and Type is <type 'int'>).
Result (Submitted value number 3): 7 (<type 'int'>)

Expectation (Submitted value number 3): result = 7 (<type 'int'>)
Submitted value number 3 is correct (Content 7 and Type is <type 'int'>).
Result (Submitted value number 4): 10 (<type 'int'>)

Expectation (Submitted value number 4): result = 10 (<type 'int'>)

Submitted value number 4 is correct (Content 10 and Type is <type 'int'>).

Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, all_conditions) identified

< Dby a sequence number): [2, 5, 8, 11] (<type 'list'>)

Expectation (Execution of state machine callback (2) (all_transitions, all_conditions)

— identified by a sequence number): result = [2, 5, 8, 11] (<type 'list'>)

Result (Submitted value number 1): 2 (<type 'int'>)

Expectation (Submitted value number 1): result = 2 (<type 'int'>)
Submitted value number 1 is correct (Content 2 and Type is <type 'int'>).
Result (Submitted value number 2): 5 (<type 'int'>)

Expectation (Submitted value number 2): result = 5 (<type 'int'>)
Submitted value number 2 is correct (Content 5 and Type is <type 'int'>).
Result (Submitted value number 3): 8 (<type 'int'>)

Expectation (Submitted value number 3): result = 8 (<type 'int'>)
Submitted value number 3 is correct (Content 8 and Type is <type 'int'>).
Result (Submitted value number 4): 11 (<type 'int'>)

Expectation (Submitted value number 4): result = 11 (<type 'int'>)

Submitted value number 4 is correct (Content 11 and Type is <type 'int'>).

A.1.20 Execution order of Callbacks

Description

The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation
User shall have the control about the execution order.

42,'

Unittest for state_machine

Fitcriterion
A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had
been regestered first.

Testresult
This test was passed with the state:

Callback execution order: Values and number of submitted values is correct. See detailed log for more
information.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Executing callback O - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Executing callback 1 - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

Result (Callback execution order): ['specific callback for reaching state_b', 'nonspecific
— callback', 'specific callback for reaching state_a', 'nonspecific callback'] (<type

- 'list'>)

Expectation (Callback execution order): result = ['specific callback for reaching state_b',
— 'monspecific callback', 'specific callback for reaching state_a', 'nonspecific callback'
< 1 (<type 'list'>)

Result (Submitted value number 1): 'specific callback for reaching state_b' (<type 'str'>)
Expectation (Submitted value number 1): result = 'specific callback for reaching state_b'

— (<type 'str'>)

Submitted value number 1 is correct (Content 'specific callback for reaching state_b' and

— Type is <type 'str'>).

Result (Submitted value number 2): 'nonspecific callback' (<type 'str'>)

Expectation (Submitted value number 2): result = 'nonspecific callback' (<type 'str'>)
Submitted value number 2 is correct (Content 'nonspecific callback' and Type is <type 'str'>).
Result (Submitted value number 3): 'specific callback for reaching state_a' (<type 'str'>)
Expectation (Submitted value number 3): result = 'specific callback for reaching state_a'

< (<type 'str'>)

Submitted value number 3 is correct (Content 'specific callback for reaching state_a' and

— Type is <type 'str'>).

Result (Submitted value number 4): 'nonspecific callback' (<type 'str'>)

Expectation (Submitted value number 4): result = 'nonspecific callback' (<type 'str'>)

Submitted value number 4 is correct (Content 'nonspecific callback' and Type is <type 'str'>).

43,’

Unittest for state_machine

B Trace for testrun with python 3.8.5 (final)

B.1 Tests with status Info (20)
B.1.1 Default State

Description
The state machine shall start in the state, given while module initialisation.

Reason for the implementation

Creation of a defined state after initialisation.

Fitcriterion
State machine is in the initial state after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

State after initialisation is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after initialisation): 'state_c' (<class 'str'>)

Expectation (State after initialisation): result = 'state_c' (<class 'str'>)
B.1.2 Default Last Transition Condtion

Description
The state machine shall return the string __init__ for last transition condition after initalisation.

Reason for the implementation
Creation of a defined state after initialisation.

Fitcriterion
The last transition condition is __init__ after initialisation.

44 /

Unittest for state_machine

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last transition condition after initialisation is correct (Content '__init__" and Type is <class 'str'>).

Result (Last transition condition after initialisation): '__init__' (<class 'str'>)

Expectation (Last transition condition after initialisation): result = '__init__' (<class
- 'str'>)

B.1.3 Default Previous State

Description

The state machine shall return None for previous state after initalisation.

Reason for the implementation
Creation of a defined state after initialisation.

Fitcriterion

The previous state is None after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Last state after initialisation is correct (Content None and Type is <class 'NoneType'>).

Result (Last state after initialisation): None (<class 'NoneType'>)

Expectation (Last state after initialisation): result = None (<class 'NoneType'>)
B.1.4 Additional Keyword Arguments

Description
The state machine shall store all given keyword arguments as variables of the classes instance.

Reason for the implementation
Store further information (e.g. for calculation of the transition conditions).

45 /

Unittest for state_machine

Fitcriterion
At least two given keyword arguments with different types are available after initialisation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Keyword argument kw_arg_no_1 stored in state_machine is correct (Content 1 and Type is <class 'int’>).

Result (Keyword argument kw_arg no_1 stored in state_machine): 1 (<class 'int'>)

Expectation (Keyword argument kw_arg no_1 stored in state_machine): result = 1 (<class 'int'>)

Keyword argument kw_arg_no_2 stored in state_machine is correct (Content '2' and Type is <class 'str’>).

Result (Keyword argument kw_arg no_2 stored in state_machine): '2' (<class 'str'>)

Expectation (Keyword argument kw_arg no_2 stored in state_machine): result = '2' (<class
— 'str'>)

Keyword argument kw_arg_no_3 stored in state_machine is correct (Content True and Type is <class
'bool’>).

Result (Keyword argument kw_arg _no_3 stored in state_machine): True (<class 'bool'>)

Expectation (Keyword argument kw_arg _no_3 stored in state_machine): result = True (<class
— 'bool'>)

Keyword argument kw_arg_no_4 stored in state_machine is correct (Content {'1": 1, '2": "two'} and Type
is <class "dict’>).

Result (Keyword argument kw_arg_no_4 stored in state_machine): { '1': 1, '2': 'two' } (<class
— 'dict'>)

Expectation (Keyword argument kw_arg _no_4 stored in state_machine): result = { '1': 1, '2':
< 'two' } (<class 'dict'>)

B.1.5 Transitiondefinition and -flow
Description
The user shall be able to define multiple states and transitions for the state machine. A transition shall have a start

state, a target state and a transition condition. The transition condition shall be a method, where the user is able to

calculate the condition on demand.

Reason for the implementation
Definition of the transitions for a state machine.

46 /

Unittest for state_machine

Fitcriterion
The order of at least three state changes is correct.

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Inffo Work routine executed the 1st time to do the state change. Defined Transitions are: True—state_b (0.0s);
False—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

State after 1st execution of work method is correct (Content 'state_b’ and Type is <class 'str'>).

Result (State after 1st execution of work method): 'state_b' (<class 'str'>)

Expectation (State after 1st execution of work method): result = 'state_b' (<class 'str'>)

Inffo Work routine executed the 2nd time to do the state change. Defined Transitions are: False—state_a (0.0s);
True—state_c (0.0s)

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd execution of work method is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 2nd execution of work method): 'state_c' (<class 'str'>)

Expectation (State after 2nd execution of work method): result = 'state_c' (<class 'str'>)

Info Work routine executed the 3rd time with no effect. No Transitions starting from state_c (dead end)

State after 3rd execution of work method is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 3rd execution of work method): 'state_c' (<class 'str'>)

Expectation (State after 3rd execution of work method): result = 'state_c' (<class 'str'>)
B.1.6 Transitiontiming
Description

The user shall be able to define for each transition a transition time. On change of the transition condition to True, the
transition timer starts counting the time from 0.0s. After reaching the transition time, the transition gets active.

47/

Unittest for state_machine

Reason for the implementation
Robustness of the state changes (e.g. Oscillating conditions shall be ignored).

Fitcriterion
The transition time and the restart of the transion timer by setting the transition condition to False and to True again

results in the expected transition timing (£0.05s).

Testresult
This test was passed with the state:

Info Initialising state machine with state_a

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Waiting for 0.160s or state change

StateMachine: State change ('condition_true'): 'state_a' -> 'state_b'

State after 1st cycle is correct (Content 'state_b’ and Type is <class 'str'>).

Result (State after 1st cycle): 'state_b' (<class 'str'>)

Expectation (State after 1st cycle): result = 'state_b' (<class 'str'>)

Transition time after 1st cycle is correct (Content 0.15063071250915527 in [0.145 ... 0.155] and Type is
<class 'float’>).

Result (Transition time after 1st cycle): 0.15063071250915527 (<class 'float'>)

Expectation (Transition time after 1st cycle): 0.145 <= result <= 0.155

Info Waiting for 0.235s or state change

StateMachine: State change ('condition_true'): 'state_b' -> 'state_c'

State after 2nd cycle is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 2nd cycle): 'state_c' (<class 'str'>)

Expectation (State after 2nd cycle): result = 'state_c' (<class 'str'>)

Transition time after 2nd cycle is correct (Content 0.15029430389404297 in [0.145 ... 0.155] and Type
is <class 'float’>).

Result (Transition time after 2nd cycle): 0.15029430389404297 (<class 'float'>)

48 /

Unittest for state_machine

Expectation (Transition time after 2nd cycle): 0.145 <= result <= 0.155

Previous state duration is correct (Content 0.22559070587158203 in [0.21999999999999997
0.22999999999999998] and Type is <class 'float’>).

Result (Previous state duration): 0.22559070587158203 (<class 'float'>)
Expectation (Previous state duration): 0.21999999999999997 <= result <= 0.22999999999999998

B.1.7 Transitionpriorisation

Description
The state machine shall use the first active transition. If multiple transition are active, the transition with the highest
overlap time will be used.

Reason for the implementation

Compensate the weakness of the execution quantisation.

Fitcriterion
At least one transition with at least two active conditions results in the expected state change.

Testresult
This test was passed with the state:

Info Initialising state machine with state_a, a transition to state_b after 0.151s and a transition to state_c after
0.150s

StateMachine: State change ('__init__'): None -> 'state_a'

Initial state after Initialisation is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Initial state after Initialisation): 'state_a' (<class 'str'>)

Expectation (Initial state after Initialisation): result = 'state_a' (<class 'str'>)

Info Waiting for 0.300s or state change

Executing method work after 0.000s
Executing method work after 0.060s
Executing method work after 0.121s
Executing method work after 0.181s

StateMachine: State change ('condition_true'): 'state_a' -> 'state_c'

State after 1st cycle is correct (Content 'state_c’ and Type is <class 'str'>).

Result (State after 1st cycle): 'state_c' (<class 'str'>)

Expectation (State after 1st cycle): result = 'state_c' (<class 'str'>)

49 /

Unittest for state_machine

B.1.8 This State

Description
The Module shall have a method for getting the current state.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least one returend state fits to the expecation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state() is correct (Content 'state_c’ and Type is <class 'str'>).

Result (Returnvalue of this_state()): 'state_c' (<class 'str'>)

Expectation (Returnvalue of this_state()): result = 'state_c' (<class 'str'>)

B.1.9 This State is

Description
The Module shall have a method for checking if the given state is currently active.

Reason for the implementation

Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Initialising the state machine with state_c

StateMachine: State change ('__init__'): None -> 'state_c'

Returnvalue of this_state_is(state_c) is correct (Content True and Type is <class 'bool">).

Result (Returnvalue of this_state_is(state_c)): True (<class 'bool'>)

50 /

Unittest for state_machine

Expectation (Returnvalue of this_state_is(state_c)): result = True (<class 'bool'>)

Returnvalue of this_state_is(state_b) is correct (Content False and Type is <class 'bool'>).

Result (Returnvalue of this_state_is(state_b)): False (<class 'bool'>)

Expectation (Returnvalue of this_state_is(state_b)): result = False (<class 'bool'>)

B.1.10 This State Duration

Description

The Module shall have a method for getting the time since the last state change appears.

Reason for the implementation

Comfortable user interface.

Fitcriterion
At least one returned duration fits to the current state duration (£ 0.05s).

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Waiting for 0.25s

Return Value of this_state_duration() is correct (Content 0.25093817710876465 in [0.2 ... 0.3] and Type
is <class 'float’>).

Result (Return Value of this_state_duration()): 0.25093817710876465 (<class 'float'>)

Expectation (Return Value of this_state_duration()): 0.2 <= result <= 0.3
B.1.11 Last Transition Condition

Description
The Module shall have a method for getting the last transition condition.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least one returned transition condition fits to the expectation.

51/

Unittest for state_machine

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition() is correct (Content 'condition_a’ and Type is <class 'str'>).

Result (Returnvalue of last_transition_condition()): 'condition_a' (<class 'str'>)

Expectation (Returnvalue of last_transition_condition()): result = 'condition_a' (<class
- 'str'>)

B.1.12 Last Transition Condition was

Description
The Module shall have a method for checking if the given condition was the last transition condition.

Reason for the implementation
Comfortable user interface.

Fitcriterion

At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of last_transition_condition(condition_a) is correct (Content True and Type is <class 'bool’>).

Result (Returnvalue of last_transition_condition(condition_a)): True (<class 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_a)): result = True (<class
— 'bool'>)

Returnvalue of last_transition_condition(condition_c) is correct (Content False and Type is <class
'bool’>).

Result (Returnvalue of last_transition_condition(condition_c)): False (<class 'bool'>)

Expectation (Returnvalue of last_transition_condition(condition_c)): result = False (<class
— 'bool'>)

52/

Unittest for state_machine

B.1.13 Previous State

Description
The Module shall have a method for getting the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least one returend state fits to the expecation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

Returnvalue of previous_state() is correct (Content 'state_a’ and Type is <class 'str'>).

Result (Returnvalue of previous_state()): 'state_a' (<class 'str'>)

Expectation (Returnvalue of previous_state()): result = 'state_a' (<class 'str'>)

B.1.14 Previous State was

Description
The Module shall have a method for checking if the given state was the previous state.

Reason for the implementation
Comfortable user interface.

Fitcriterion
At least two calls with different return values fit to the expectation.

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'

StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'

53/

Unittest for state_machine

Returnvalue of previous_state_was(state_a) is correct (Content True and Type is <class 'bool'>).

Result (Returnvalue of previous_state_was(state_a)): True (<class 'bool'>)

Expectation (Returnvalue of previous_state_was(state_a)): result = True (<class 'bool'>)

Returnvalue of previous_state_was(state_b) is correct (Content False and Type is <class 'bool">).

Result (Returnvalue of previous_state_was(state_b)): False (<class 'bool'>)

Expectation (Returnvalue of previous_state_was(state_b)): result = False (<class 'bool'>)

B.1.15 Previous State Duration

Description

The Module shall have a method for getting active time for the previous state.

Reason for the implementation

Comfortable user interface.

Fitcriterion

At least one returned duration fits to the previous state duration (£ 0.05s).

Testresult
This test was passed with the state:

Info Running state machine test sequence.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Waiting for 0.75s

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'

Return Value of previous_state_duration() is correct (Content 0.7514586448669434 in [0.7 ... 0.8] and
Type is <class 'float’>).

Result (Return Value of previous_state_duration()): 0.7514586448669434 (<class 'float'>)

Expectation (Return Value of previous_state_duration()): 0.7 <= result <= 0.8
B.1.16 State change callback for a defined transition and targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments
for a defined set of transition_condition and target_state.

54 /

Unittest for state_machine

Reason for the implementation
Triggering state change actions for a specific transition condition and targetstate.

Fitcriterion
Methods are called in the registration order after state change with all user given arguments for the defined transition
condition and targetstate and at least for one other condition not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Increasing sequence number to 6 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, condition_a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, condition_a) identified by a

— sequence number): [1] (<class 'list'>)

Expectation (Execution of state machine callback (1) (state_b, condition_a) identified by a
- sequence number): result = [1] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Execution of state machine callback (2) (state_b, condition_a) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, condition_a) identified by a

— sequence number): [2] (<class 'list'>)

Expectation (Execution of state machine callback (2) (state_b, condition_a) identified by a
— sequence number): result = [2] (<class 'list'>)

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).

55 / [66]

Unittest for state_machine

B.1.17 State change callback for a defined transition

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments

for a defined transition_condition and all target_states.

Reason for the implementation
Triggering state change actions for a specific transition condition.

Fitcriterion
Methods are called in the registration order after state change with all user given arguments for the defined transition
condition and at least for one other transition condition not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Increasing sequence number to 2 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 4 caused by callback_execution
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (all_transitions, condition_b) identified by a sequence number:

Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, condition_b) identified by

— a sequence number): [2, 5] (<class 'list'>)

Expectation (Execution of state machine callback (1) (all_transitions, condition_b)

— identified by a sequence number): result = [2, 5] (<class 'list'>)

Result (Submitted value number 1): 2 (<class 'int'>)

56 /

Unittest for state_machine

Expectation (Submitted value number 1): result = 2 (<class 'int'>)
Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).
Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Execution of state machine callback (2) (all_transitions, condition_b) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, condition_b) identified by

— a sequence number): [3, 6] (<class 'list'>)

Expectation (Execution of state machine callback (2) (all_transitions, condition_b)

— identified by a sequence number): result = [3, 6] (<class 'list'>)
Result (Submitted value number 1): 3 (<class 'int'>)

Expectation (Submitted value number 1): result = 3 (<class 'int'>)
Submitted value number 1 is correct (Content 3 and Type is <class 'int'>).
Result (Submitted value number 2): 6 (<class 'int'>)

Expectation (Submitted value number 2): result = 6 (<class 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <class 'int'>).

B.1.18 State change callback for a defined targetstate

Description
The state machine shall call all registered methods in the same order like the registration with all user given arguments
for all transition_conditions and a defined target_state.

Reason for the implementation
Triggering state change actions for a specific targetstate.

Fitcriterion
Methods are called in the registration order after state change with the defined targetstate and at least for one other
targetstate not.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution

Executing callback 1 - tests.test_callbacks.exec_with_counter

57 /

Unittest for state_machine

Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Increasing sequence number to 5 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 7 caused by callback_execution
Increasing sequence number to 8 caused by sequence progress

StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'

Execution of state machine callback (1) (state_b, all_conditions) identified by a sequence number: Values
and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (state_b, all_conditions) identified by a

— sequence number): [1, 5] (<class 'list'>)

Expectation (Execution of state machine callback (1) (state_b, all_conditions) identified by
— a sequence number): result = [1, 5] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)

Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).

Execution of state machine callback (2) (state_b, all_conditions) identified by a sequence number: Values

and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (state_b, all_conditions) identified by a

— sequence number): [2, 6] (<class 'list'>)

Expectation (Execution of state machine callback (2) (state_b, all_conditions) identified by
— a sequence number): result = [2, 6] (<class 'list'>)

Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)

Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).

Result (Submitted value number 2): 6 (<class 'int'>)

Expectation (Submitted value number 2): result = 6 (<class 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <class 'int'>).
B.1.19 State change callback for all kind of state changes
Description

The state machine shall call all registered methods in the same order like the registration with all user given arguments

for all transitions.

58/ [66]

Unittest for state_machine

Reason for the implementation
Triggering state change actions for all transition conditions and targetstates.

Fitcriterion
Methods are called in the registration order after state change.

Testresult
This test was passed with the state:

Info Running state machine sequence and storing sequence number for each callback

StateMachine: State change ('__init__'): None -> 'state_a'
Increasing sequence number to 1 caused by sequence progress
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 2 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 3 caused by callback_execution
Increasing sequence number to 4 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 5 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 6 caused by callback_execution
Increasing sequence number to 7 caused by sequence progress
StateMachine: State change ('condition_b'): 'state_a' -> 'state_b'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 8 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter
Increasing sequence number to 9 caused by callback_execution
Increasing sequence number to 10 caused by sequence progress
StateMachine: State change ('condition_c'): 'state_b' -> 'state_c'
Executing callback O - tests.test_callbacks.exec_with_counter
Increasing sequence number to 11 caused by callback_execution
Executing callback 1 - tests.test_callbacks.exec_with_counter

Increasing sequence number to 12 caused by callback_execution

Execution of state machine callback (1) (all_transitions, all_conditions) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (1) (all_transitions, all_conditions) identified

— by a sequence number): [1, 4, 7, 10] (<class 'list'>)

59/ [66]

Unittest for state_machine

Expectation (Execution of state machine callback (1) (all_transitions, all_conditions)
— identified by a sequence number): result = [1, 4, 7, 10] (<class 'list'>)
Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).
Result (Submitted value number 2): 4 (<class 'int'>)

Expectation (Submitted value number 2): result = 4 (<class 'int'>)

Submitted value number 2 is correct (Content 4 and Type is <class 'int'>).
Result (Submitted value number 3): 7 (<class 'int'>)

Expectation (Submitted value number 3): result = 7 (<class 'int'>)

Submitted value number 3 is correct (Content 7 and Type is <class 'int'>).
Result (Submitted value number 4): 10 (<class 'int'>)

Expectation (Submitted value number 4): result = 10 (<class 'int'>)

Submitted value number 4 is correct (Content 10 and Type is <class 'int'>).

Execution of state machine callback (2) (all_transitions, all_conditions) identified by a sequence number:
Values and number of submitted values is correct. See detailed log for more information.

Result (Execution of state machine callback (2) (all_transitions, all_conditions) identified

— by a sequence number): [2, 5, 8, 11] (<class 'list'>)

Expectation (Execution of state machine callback (2) (all_transitions, all_conditions)

— identified by a sequence number): result = [2, 5, 8, 11] (<class 'list'>)
Result (Submitted value number 1): 2 (<class 'int'>)

Expectation (Submitted value number 1): result = 2 (<class 'int'>)
Submitted value number 1 is correct (Content 2 and Type is <class 'int'>).
Result (Submitted value number 2): 5 (<class 'int'>)

Expectation (Submitted value number 2): result = 5 (<class 'int'>)
Submitted value number 2 is correct (Content 5 and Type is <class 'int'>).
Result (Submitted value number 3): 8 (<class 'int'>)

Expectation (Submitted value number 3): result = 8 (<class 'int'>)
Submitted value number 3 is correct (Content 8 and Type is <class 'int'>).
Result (Submitted value number 4): 11 (<class 'int'>)

Expectation (Submitted value number 4): result = 11 (<class 'int'>)

Submitted value number 4 is correct (Content 11 and Type is <class 'int'>).
B.1.20 Execution order of Callbacks

Description

The callbacks shall be executed in the same order as they had been registered.

Reason for the implementation
User shall have the control about the execution order.

60,’

Unittest for state_machine

Fitcriterion
A callback with specific targetstate and condition will be executed before a non specific callback if the specific one had
been regestered first.

Testresult
This test was passed with the state:

Callback execution order: Values and number of submitted values is correct. See detailed log for more
information.

StateMachine: State change ('__init__'): None -> 'state_a'
StateMachine: State change ('condition_a'): 'state_a' -> 'state_b'
Executing callback O - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

StateMachine: State change ('condition_b'): 'state_b' -> 'state_a'
Executing callback 1 - unittest.test.report_value

Executing callback 2 - unittest.test.report_value

Result (Callback execution order): ['specific callback for reaching state_b', 'nonspecific
— callback', 'specific callback for reaching state_a', 'nonspecific callback'] (<class

- 'list'>)

Expectation (Callback execution order): result = ['specific callback for reaching state_b',
— 'monspecific callback', 'specific callback for reaching state_a', 'nonspecific callback'
—] (<class 'list'>)

Result (Submitted value number 1): 'specific callback for reaching state_b' (<class 'str'>)

Expectation (Submitted value number 1): result = 'specific callback for reaching state_b'
— (<class 'str'>)

Submitted value number 1 is correct (Content 'specific callback for reaching state_b' and

— Type is <class 'str'>).
Result (Submitted value number 2): 'nonspecific callback' (<class 'str'>)
Expectation (Submitted value number 2): result = 'nonspecific callback' (<class 'str'>)

Submitted value number 2 is correct (Content 'nonspecific callback' and Type is <class
- 'str'>).

Result (Submitted value number 3): 'specific callback for reaching state_a' (<class 'str'>)

Expectation (Submitted value number 3): result = 'specific callback for reaching state_a'
— (<class 'str'»>)

Submitted value number 3 is correct (Content 'specific callback for reaching state_a' and

— Type is <class 'str'>).
Result (Submitted value number 4): 'nonspecific callback' (<class 'str'>)
Expectation (Submitted value number 4): result = 'nonspecific callback' (<class 'str'>)

Submitted value number 4 is correct (Content 'nonspecific callback' and Type is <class
- 'str'>).

61/ [66]

Unittest for state_machine

C Test-Coverage

C.1 state_machine

The line coverage for state_machine was 100.0%
The branch coverage for state_machine was 100.0%

C.1.1 statemachine.__init__.py

The line coverage for state_ machine.__init__.py was 100.0%
The branch coverage for state machine.__init__.py was 100.0%
1 #!/usr/bin/env python
> # —x— coding: utf—8 —x—
3 #

o

s state_machine (State Machine)

s *x Author:*x

1 % Dirk Alders <sudo—dirk@mount—mockery.de>

12 xx Description :*x

14 This Module helps implementing state machines.

16 kkSubmodules:*x*

18 % :class: state_machine.state_machine’

20 kxUnittest ik

22 See also the :download: unittest <state_machine/_testresults_/unittest.pdf>" documentation.

22 xxModule Documentation :xx

o

 __DEPENDENCIES__ = []

20 import logging
30 import time

33 try:

34 from config import APP.NAME as ROOT_LOGGER_NAME
35 except ImportError:

36 ROOT_LOGGER.NAME = 'root'

37 logger = logging .getLogger (ROOT_LOGGER.NAME) . getChild (-_name__)

2w __INTERPRETER_. = (2, 3)

41 """ The supported Interpreter—Versions"""

22 __DESCRIPTION__. = """ This Module helps implementing state machines.”""”
43 """ The Module description”””

4 class state_machine(object):

62/

47

48

49

50

51

52

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Unittest for state_machine

[IRTRT)

:param default_state: The default state which is set on initialisation.
:param log_lvl: The log level, this Module logs to (see Loging—Levels of Module :mod:" logging

)

note:: Additional keyword parameters well be stored as varibles of the instance (e.g. to
give variables or methods for transition condition calculation).

A state machine class can be created by deriving it from this class. The transitions are
defined by overriding the variable “TRANSITIONS".

This Variable is a dictionary , where the key is the start—state and the content is a tuple or
list of transitions. Each transition is a tuple or list

including the following information: (condition—method (str), transition—time (number),
target_state (str)).

note:: The condition—method needs to be implemented as part of the new class.

note:: It is usefull to define the states as variables of this class.

xx Example :* %
literalinclude :: state_machine/_examples_/example.py

literalinclude :: state_machine/_examples_/example.log

[IRTRT)

TRANSITIONS = {}
LOG_PREFIX = 'StateMachine: '

def __init__(self, default_state, log-lvl, xxkwargs):
self. __state__ = None
self. __last_transition_condition__ = None
self. __conditions_start_time__ = {}
self.__state_change_callbacks__ = {}
self. __log_lvl__ = log_Ilvl
self.__set_state__(default_state, '__init__")
self.__callback_id__ =0

for key in kwargs:
setattr(self, key, kwargs.get(key))

def register_state_change_callback(self, state, condition, callback, xargs, *xkwargs):

[TRTEN)

:param state: The target state. The callback will be executed, if the state machine
changes to this state. None means all states.

:type state: str

:param condition: The transition condition. The callback will be executed, if this
condition is responsible for the state change. None means all conditions.

:type condition: str
:param callback: The callback to be executed.

note:: Additional arguments and keyword parameters are supported. These arguments and
parameters will be used as arguments and parameters for the callback execution.

This methods allows to register callbacks which will be executed on state changes.

if state not in self.__state_change_callbacks__:
self. __state_change_callbacks__[state] = {}

if condition not in self.__state_change_callbacks__[state]:
self.__state_change_callbacks__[state][condition] = []

self. __state_change_callbacks__[state][condition].append((self.__callback_id__, callback,

args, kwargs))
self.__callback_id__ 4+=1

63/

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

Unittest for state_machine

def this_state(self):

:return: The current state.

This method returns the current state of the state machine.

[TRIEN)

return self.__state__

def this_state_is(self, state):

[TRTET)

:param state: The state to be checked

:type state: str

:return: True if the given state is currently active, else False.
:rtype: bool

This methods returns the boolean information if the state machine is currently in the
given state.

noon

return self.__state_._. — state

def this_state_duration(self):

:return: The time how long the current state is active.
:rtype: float

This method returns the time how long the current state is active.

return time.time() — self.__time_stamp_state_change__

def last_transition_condition(self):

ITRTEN)

:return: The last transition condition.
irtype: str

This method returns the last transition condition.

return self.__last_transition_condition__

def last_transition_condition_was(self, condition):

nmoon

:param condition: The condition to be checked

:type condition: str

:return: True if the given condition was the last transition condition, else False.
:rtype: bool

This methods returns the boolean information if the last transition condition is

equivalent to the given condition.

return self.__last_transition_condition__ =— condition

def previous_state(self):

TR

:return: The previous state.
crtype: str

This method returns the previous state of the state machine.

return self.__prev_state__

def previous_state_was(self, state):

64/

159

160

161

164

165

166

167

168

169

170

180

181

182

183

184

185

186

188

189

190

191

192

193

194

195

196

197

198

199

mon

:param state: The state to
:type state: str

:return: True

crtype:

if the given
bool

This methods

given state.

[IRIRT

return self.__prev_state__

def previous_state_duration(sel

The time how
float

creturn:
crtype:

long

This method

return self.

returns the boolean

returns the time how

Unittest for state_machine

be checked

state was previously active, else False.

information if the state machine was previously in the

— state

f):

the previous state was active.

long the previous state was active.

__prev_state_dt_._

def __set_state__(self, target_state, condition):
logger.log(self.__log_lvl__, "%s State change (%s): %s —> %s”, self.LOG_PREFIX, repr(
condition), repr(self.__state__), repr(target_state))
timestamp = time.time ()
self. __prev_state__. = self.__state__
if self.__prev_state__ is None:
self.__prev_state_dt__ = 0.
else:
self. __prev_state_dt__ = timestamp — self.__time_stamp_state_change__
self.__state__. = target_state
self. __last_transition_condition__ = condition
self.__time_stamp_state_change__ = timestamp
self.__conditions_start_time__ = {}
Callback collect
this_state_change_callbacks = []
this_state_change_callbacks.extend(self.__state_change_callbacks__.get(None, {}).get(None

1))

this_state_change_callbacks.

get (None,

(1)

this_state_change_callbacks.

condition ,

(1)

this_state_change_callbacks.

(1)

sorting

get(condition ,
Callback
this_state_change_callbacks
Callback execution
for cid,

callback , args,

logger.debug('Executing callback %d — %s.%s',

__name__)

kwargs in

extend(self.__state_change_callbacks__.get(target_state, {}).
extend(self.__state_change_callbacks__.get(None,

{}) - get(

extend(self.__state_change_callbacks__.get(target_state, {}).

.sort ()

this_state_change_callbacks:

cid, callback.__module__, callback.

callback (xargs, *xkwargs)

def work(self):

This Method needs to be executed

nmoon

tm = time.time ()

cyclicly to enable the state machine.

transitions = self .TRANSITIONS. get(self.this_state())

if transitions is not None:
active_transitions = []
cnt =0

for method_name, transi

method = getattr(self,

tion_delay , target_state in transitions:

method_name)

65/

Unittest for state_machine

if method():
if method_name not in self.__conditions_start_time__:
self.__conditions_start_time__[method_.name] = tm
if tm — self.__conditions_start_time__[method_name] >=

active_transitions.append((transition_delay — tm +

transition_delay:
self.

__conditions_start_time__[method_name], cnt, target_state , method_name))

else:
self.__conditions_start_time__[method_name] = tm
cnt +=1
if len(active_transitions) > O0:
active_transitions.sort ()

self. __set_state__(active_transitions[0][2], active_transitions [0][3])

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 2.7.18 (final)
	Test-Statistic for testrun with python 3.8.5 (final)
	Coverage Statistic

	Tested Requirements
	Module Initialisation
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments

	Transition Changes
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation

	Module Interface
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration

	Transition Callbacks
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Trace for testrun with python 2.7.18 (final)
	Tests with status Info (20)
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Trace for testrun with python 3.8.5 (final)
	Tests with status Info (20)
	Default State
	Default Last Transition Condtion
	Default Previous State
	Additional Keyword Arguments
	Transitiondefinition and -flow
	Transitiontiming
	Transitionpriorisation
	This State
	This State is
	This State Duration
	Last Transition Condition
	Last Transition Condition was
	Previous State
	Previous State was
	Previous State Duration
	State change callback for a defined transition and targetstate
	State change callback for a defined transition
	State change callback for a defined targetstate
	State change callback for all kind of state changes
	Execution order of Callbacks

	Test-Coverage
	 state_machine
	 state_machine.__init__.py

