Unittest for stringtools

February 3, 2020

Unittest for stringtools

Contents
(1 Test Information| 4
L1 Test Candidate Informationl 4
1.2 Unittest Informationl 4
1.3 Test System Information| 4
[2—Statistid 4
2.1 Test-Statistic for testrun with python 2.7.17 (final)l 4
.2 Test-Statistic for testrun with python 3.6.9 (final)] 5
2.3 Coverage Statistic] 5
[3 Tested Requirements| 6
3.1 Stream Definition] 6
[3.1.1 Physical representation| 6
3.1.2 Time representation| L e 7
[3.1.3 Fraction representation| L 8
3.2 Human readable value representations| L 9
3.3 Stream to Human readable String| 9
3.3.1 Hexadecimal Values| 9
13.3.2 Number of Bytes| 10
B33 _CRIEFEED oo 10
3.4 Stream Compression|. e 11
3.4.1 Compress| e 11
BAZ Exfracl. o oo 13
[3.5 Carriagereturn Seperation Protocol (CSP)[. 14
B5I1 Frame creationl 14
B52 Frame creationerrod. 16
3.5.3 Frame processing| e 17
13.5.4 Frame processing - Input data type error| 18
[3.6 Serial Transfer Protocol (STP)| 19
B6I Framecreationl 19

Unittest for stringtools

13.6.2 Frame creation - Start pattern and end pattern inside a message| 20
13.6.3 Frame processing| L 21
13.6.4 Frame processing - Input data type error|o 22
13.6.5 Frame processing - Start pattern and end pattern inside a message|. 23
13.6.6 Frame processing - Data before the start pattern| 23
13.6.7 Frame processing - Incorrect start patterns|. 24
13.6.8 Frame processing - Incorrect end pattern|. L 25
13.6.9 Frame processing - After state corruption| 26
[A" Trace for testrun with python 2.7.17 (final)| 28
A1 Tests with status Info (21)[. e 28
IA.1.1 Physical representation| L 28
JA.1.2 Time representation| e 29
IA.1.3 Fraction representation| 30
IA.l4 Hexadecimal Values| 31
IA.LL5 Number of Bytes| e 32
AI6 CRLE-FREN oot 32
JALL7 Compress| e 32
AIB8 Extracl. oo 33
[A19 Framecreationl 34
IA.1.10 Frame creation errorl. L 34
JA.L.I1 Frame processing| e e 35
IA.1.12 Frame processing - Input data type error|. 36
[A113 Frame creationl 37
|A.1.14 Frame creation - Start pattern and end pattern inside a message| 37
JA.L15 Frame proCcessingl o e e e e 38
IA.1.16 Frame processing - Input data type error| 39
|A.1.17 Frame processing - Start pattern and end pattern inside a message|. 40
IA.1.18 Frame processing - Data before the start pattern| 40
IA.1.19 Frame processing - Incorrect start patterns|. L 41
|A.1.20 Frame processing - Incorrect end pattern|. Lo 42
IA.1.21 Frame processing - After state corruption| 44

Unittest for stringtools

[B Trace for testrun with python 3.6.9 (final)| 45
[B.1 Tests with status Info (21)] 45
IB.1.1 Physical representation| 45
IB.1.2 Time representation| e 47
IB.1.3 Fraction representation| 48
IB.1.4 Hexadecimal Values| 49
IB.1.5- Number of Bytes| 49
BIG CRIFFIREN . . . o o o o oo 50
IB.1.7 Compress| e 50
BIB Extractl. oo 51
[B.1.9 Frame creationl 52
IB.1.10 Frame creation errorl. e 52
IB.1.11 Frame processing| e 53
IB.1.12 Frame processing - Input data type error| 53
B.1.13 Frame creationl 55
IB.1.14 Frame creation - Start pattern and end pattern inside a message| 55
IB.1.15 Frame processing| e e e 56
IB.1.16 Frame processing - Input data type error| L 56
IB.1.17 Frame processing - Start pattern and end pattern inside a message|. 58
IB.1.18 Frame processing - Data before the start pattern| 58
IB.1.19 Frame processing - Incorrect start patterns|. 59
IB.1.20 Frame processing - Incorrect end pattern|. L 60
IB.1.21 Frame processing - After state corruption| 62

[C Test-Coverage 63
IC.1 stringtools | 63
IC.1.1 stringtools.__init__.py |. 64
[C.1.2 stringtoolS.CSP.PY | - - « « « o v e 67
[C.1.3 stringtools.Stp.PY | o . 69

3/

Unittest for stringtools

1 Test Information

1.1 Test Candidate Information

The Module stringtools is designed to support functionality for strings (e.g. transfer strings via a bytestream,

compressing, extracting, ...). For more Information read the sphinx documentation.

Library Information

Name stringtools

State Released

Supported Interpreters python2, python3

Version 8a325608d13645870f6f32774828606f

Dependencies

1.2 Unittest Information

Unittest Information

Version 50d96e3d37f4672ae07c76alal2c6546
Testruns with python 2.7.17 (final), python 3.6.9 (final)

1.3 Test System Information

System Information

Architecture 64bit

Distribution LinuxMint 19.3 tricia

Hostname ahorn

Kernel 5.3.0-28-generic (#30 18.04.1-Ubuntu SMP Fri Jan 17 06:14:09 UTC 2020)
Machine x86_64

Path /user_data/data/dirk/prj/unittest/stringtools/unittest

System Linux

Username dirk

2 Statistic

2.1
Number of tests 21
Number of successfull tests 21

Number of possibly failed tests 0

Number of failed tests 0
Executionlevel Full Test (all defined tests)
Time consumption 0.020s

4/

2.2

Unittest for stringtools

Number of tests

Number of successfull tests
Number of possibly failed tests
Number of failed tests

21
21
0
0

Executionlevel

Time consumption

Full Test (all defined tests)
0.016s

2.3 Coverage Statistic

Module- or Filename

Line-Coverage Branch-Coverage

stringtools
stringtools.__init__.py
stringtools.csp.py
stringtools.stp.py

100.0% 97.7%
100.0%
100.0%
100.0%

5/(72)

Unittest for stringtools

3 Tested Requirements

3.1 Stream Definition

A Stream is from class bytes for python3 and from type str for python2.

3.1.1 Physical representation

Description

The library stringtools shall have a method physical_repr, transforming a float or integer value to a string with a

1 to 3 digit value followed by the physical prefix for the unit.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.1]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 2.7.17 (final)
/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (24)
2020-02-03 18:42:08,358

2020-02-03 18:42:08,361

0.002s

Testsummary:

Physical representation for 1.17e-10 is correct (Content '117p’ and Type is <type 'str'>).
Physical representation for 5.4e-08 is correct (Content '54n’ and Type is <type 'str'>).
Physical representation for 2.53e-05 is correct (Content '25.3/xc2/xb5" and Type is <type
'str'>).

Physical representation for 0.1 is correct (Content '100m’ and Type is <type 'str'>).

Physical representation for 1 is correct (Content '1" and Type is <type 'str'>).

Physical representation for 1000 is correct (Content "1k’ and Type is <type 'str'>).

Physical representation for 1005001 is correct (Content '1.01M" and Type is <type 'str'>).
Physical representation for 1004000000 is correct (Content '1G’ and Type is <type 'str'>).
Physical representation for 1003000000000 is correct (Content '1T' and Type is <type 'str'>).
Physical representation for 10000000000000000 is correct (Content '10P" and Type is <type
'str'>).

Physical representation for 17.17 is correct (Content '17.17" and Type is <type 'str'>).
Physical representation for 117000 is correct (Content '117k’ and Type is <type 'str'>).
Physical representation for 117.17 is correct (Content '117.2" and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.1]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.6.9 (final)
/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (24)
2020-02-03 18:42:08,767

2020-02-03 18:42:08,769

0.002s

6/[72)

Testsummary:

Unittest for stringtools

Physical representation for 1.17e-10 is correct (Content '117p’ and Type is <class 'str'>).
Physical representation for 5.4e-08 is correct (Content '54n’ and Type is <class 'str'>).
Physical representation for 2.53e-05 is correct (Content '25.3" and Type is <class 'str'>).
Physical representation for 0.1 is correct (Content '100m’ and Type is <class 'str'>).

Physical representation for 1 is correct (Content '1" and Type is <class 'str'>).

Physical representation for 1000 is correct (Content '1k’ and Type is <class 'str'>).

Physical representation for 1005001 is correct (Content '1.01M" and Type is <class 'str'>).
Physical representation for 1004000000 is correct (Content '1G’ and Type is <class 'str'>).
Physical representation for 1003000000000 is correct (Content '1T" and Type is <class 'str'>).
Physical representation for 10000000000000000 is correct (Content '10P’ and Type is <class
'str’>).

Physical representation for 17.17 is correct (Content '17.17" and Type is <class 'str'>).
Physical representation for 117000 is correct (Content '117k’ and Type is <class 'str'>).
Physical representation for 117.17 is correct (Content '117.2" and Type is <class 'str'>).

3.1.2 Time representation

Description

The library stringtools shall have a method physical_repr, transforming an integer value to a time string like

HH:MM: SS.
Testresult
This test was passed with the state: . See also full trace in section [A.1.2]
Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (25)
Start-Time: 2020-02-03 18:42:08,361
Finished-Time: 2020-02-03 18:42:08,362
Time-Consumption 0.001s
Testsummary:
Time representation for 59 is correct (Content '00:59" and Type is <type 'str'>).
Time representation for 60 is correct (Content '01:00" and Type is <type 'str'>).
Time representation for 3599 is correct (Content '59:59" and Type is <type 'str'>).
Time representation for 3600 is correct (Content '01:00:00" and Type is <type 'str'>).
Time representation for 86399 is correct (Content '23:59:59' and Type is <type 'str'>).
Time representation for 86400 is correct (Content '1D’" and Type is <type 'str'>).
Time representation for 86459 is correct (Content '1D 00:59" and Type is <type 'str'>).
Time representation for 90000 is correct (Content '1D 01:00:00" and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.2]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (25)

7/

Start-Time:
Finished-Time:
Time-Consumption

Unittest for stringtools

2020-02-03 18:42:08,770
2020-02-03 18:42:08,771
0.001s

Testsummary:

Time representation for 59 is correct (Content '00:59" and Type is <class 'str'>).

Time representation for 60 is correct (Content '01:00" and Type is <class 'str'>).

Time representation for 3599 is correct (Content '59:59" and Type is <class 'str'>).

Time representation for 3600 is correct (Content '01:00:00" and Type is <class 'str'>).
Time representation for 86399 is correct (Content '23:59:59" and Type is <class 'str'>).
Time representation for 86400 is correct (Content '1D’ and Type is <class 'str'>).

Time representation for 86459 is correct (Content '1D 00:59" and Type is <class 'str'>).
Time representation for 90000 is correct (Content '1D 01:00:00" and Type is <class 'str'>).

3.1.3 Fraction representation

Description

The library stringtools shall have a method frac_repr, transforming a float or integer value to a fraction string with

a limited denominator.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.3]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (26)

Start-Time: 2020-02-03 18:42:08,362

Finished-Time: 2020-02-03 18:42:08,363

Time-Consumption 0.001s

Testsummary:
Fraction representation for 17.4 is correct (Content '87/5" and Type is <type 'str'>).
Fraction representation for 0.25 is correct (Content '1/4" and Type is <type 'str'>).
Fraction representation for 0.1 is correct (Content '1/10" and Type is <type 'str'>).
Fraction representation for 0.01666667 is correct (Content '1/60" and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.3]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.6.9 (final)
/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (26)
2020-02-03 18:42:08,771

2020-02-03 18:42:08,772

0.001s

Testsummary:

Fraction representation for 17.4 is correct (Content '87/5" and Type is <class 'str'>).
Fraction representation for 0.25 is correct (Content '1/4" and Type is <class 'str'>).

8/[72)

Unittest for stringtools

Fraction representation for 0.1 is correct (Content '1/10" and Type is <class 'str'>).
Fraction representation for 0.01666667 is correct (Content '1/60" and Type is <class 'str'>).

3.2 Human readable value representations

3.3 Stream to Human readable String

3.3.1 Hexadecimal Values

Description

A Stream shall be converted to a human readable String containing all bytes as hexadecimal values seperated by a Space.

Reason for the implementation

Make non printable characters printable.

Fitcriterion

A stream shall be converted at least once and the hex values shall exist in the returnvalue in the correct order.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.4]

Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (29)
Start-Time: 2020-02-03 18:42:08,363
Finished-Time: 2020-02-03 18:42:08,364
Time-Consumption 0.000s
Testsummary:
Info Checking test pattern de ad be ef (<type 'str'>).
Pattern included all relevant information in the correct order.
Testresult

This test was passed with the state:

. See also full trace in section [B.1.4]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (29)
Start-Time: 2020-02-03 18:42:08,772

Finished-Time: 2020-02-03 18:42:08,772

Time-Consumption 0.001s

Testsummary:

Info Checking test pattern de ad be ef (<class 'bytes'>).

Pattern included all relevant information in the correct order.

9/172

Unittest for stringtools

3.3.2 Number of Bytes

Description

The Length of a Stream surrounded by brakets shall be included in the human readable string.

Reason for the implementation

Show the length of a Stream without counting the seperated values.

Fitcriterion

The described pattern including the decimal number of bytes is included in the string for at least one Stream.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.5]

Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (30)
Start-Time: 2020-02-03 18:42:08,364
Finished-Time: 2020-02-03 18:42:08,364
Time-Consumption 0.000s
Testsummary:
Info Checking test pattern with length 4.
'(4)" is in '(4): de ad be ef’ at position 0
Testresult

This test was passed with the state:

. See also full trace in section [B.1.5]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (30)
Start-Time: 2020-02-03 18:42:08,772

Finished-Time: 2020-02-03 18:42:08,772

Time-Consumption 0.000s

Testsummary:

Info Checking test pattern with length 4.

'(4)" is in '(4): de ad be ef’ at position 0

3.3.3 CRLF-Filter

Description

The module stringtools shall have a method to replace carriage return and line feed to their escaped representation.

Reason for the implementation

Replace these characters to make output printable (e.g. for logging a string based protocol).

10/[7]

Fitcriterion

Unittest for stringtools

Filter at least one string and check at least one CR and one LF representation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.6]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (31)

Start-Time: 2020-02-03 18:42:08,364

Finished-Time: 2020-02-03 18:42:08,364

Time-Consumption 0.000s

Testsummary:

Info Checking test pattern with length 4.
Returnvalue of linefeed filter is correct (Content 'test//r//n123//r//n" and Type is <type
'str’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.6]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (31)
Start-Time: 2020-02-03 18:42:08,773

Finished-Time: 2020-02-03 18:42:08,773

Time-Consumption 0.000s

Testsummary:

Info Checking test pattern with length 4.

Returnvalue of linefeed filter is correct (Content b'test//r//n123//r//n" and Type is <class

'bytes’>).

3.4 Stream Compression

3.4.1 Compress

Description

The module stringtools shall have a method compressing a Stream with gzip.

Reason for the implementation

Speed up transfer with low transfer rate.

Fitcriterion

Compressed Stream is extractable and results in the original data.

11/

Unittest for stringtools

Testresult
This test was passed with the state: Success. See also full trace in section [A.1.7]

12/[19

Unittest for stringtools

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (34)

Start-Time: 2020-02-03 18:42:08,364

Finished-Time: 2020-02-03 18:42:08,365

Time-Consumption 0.001s

Testsummary:

Info Compressing Streams result in differnt streams with the same input stream. Therefore the test
will compare the decompressed data.

Info Compressing stream: (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff fF ff ff ff ff ff ff ff
ff ff ff fF fF fF

Info Extracting stream: (26): 1f 8b 08 00 70 5b 38 5e 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1le
00 00 00
Extracted data is correct (Content (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff
ff ff ff ff £f £f £F fF fF ff ff ff and Type is <type 'str’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.7]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.6.9 (final)
/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (34)
2020-02-03 18:42:08,773

2020-02-03 18:42:08,774

0.001s

Testsummary:

Info

Info

Info

Compressing Streams result in differnt streams with the same input stream. Therefore the test

will compare the decompressed data.
Compressing stream: (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff fF ff ff ff ff ff ff ff

ff ff ff f f f
Extracting stream: (26): 1f 8b 08 00 70 5b 38 5e 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1le

00 00 00
Extracted data is correct (Content (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff

ff ff ff ff ff ff ff ff ff ff ff ff and Type is <class 'bytes'>).

3.4.2 Extract

Description

The module stringtools shall have a method extracting a Stream with gzip.

Reason for the implementation

Speed up transfer with low transfer rate.

Fitcriterion

Extracted Stream is equal to the original compressed data.

13/[7]

Testresult

This test was passed with the state:

Unittest for stringtools

. See also full trace in section [A.1.8]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (35)

Start-Time: 2020-02-03 18:42:08,365

Finished-Time: 2020-02-03 18:42:08,366

Time-Consumption 0.000s

Testsummary:

Info Extracting stream: (26): 1f 8b 08 00 34 e0 04 5d 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e
00 00 00
Extracted data is correct (Content '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff
ff ff ff ff ff £f £f £f ff ff ff ff ff" and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.8]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.6.9 (final)
/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (35)
2020-02-03 18:42:08,774

2020-02-03 18:42:08,774

0.000s

Testsummary:

Info

Extracting stream: (26): 1f 8b 08 00 34 e0 04 5d 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e

00 00 00
Extracted data is correct (Content '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff

ff ff ff ff ff £f ff f £f ff ff £ff ff' and Type is <class 'str'>).

3.5 Carriagereturn Seperation Protocol (CSP)

The Carriagereturn Seperation Protocol shall use carriage return as the end pattern for message seperation.

3.5.1 Frame creation

Description

The CSP module shall support a method to create a Frame from a stream.

Reason for the implementation

Simple message or frame generation for streams (e.g. Keyboard (user input), RFID-Reader, ...).

Fitcriterion

Creation of a testframe and checking the result.

14/

Unittest for stringtools

Testresult
This test was passed with the state: Success. See also full trace in section [A.1.9]

15/[19

Unittest for stringtools

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (39)

Start-Time: 2020-02-03 18:42:08,366

Finished-Time: 2020-02-03 18:42:08,366

Time-Consumption 0.000s

Testsummary:

Info Creating testframe for " :testframe: for csp”

CSP-Frame is correct (Content ":testframe: for csp/n’ and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.9]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (39)
Start-Time: 2020-02-03 18:42:08,774

Finished-Time: 2020-02-03 18:42:08,775

Time-Consumption 0.000s

Testsummary:

Info Creating testframe for 'b’:testframe: for csp”

CSP-Frame is correct (Content b':testframe: for csp/n’ and Type is <class 'bytes'>).

3.5.2 Frame creation error

Description

The Frame creation Method shall raise ValueError, if a frame separation character is in the Source-String.

Reason for the implementation

String including separation charcter will be splitted in pieces while processing after transport.

Fitcriterion

ValueErroro is raised for at least one String including the separation character.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.10]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (40)
Start-Time: 2020-02-03 18:42:08,366

Finished-Time: 2020-02-03 18:42:08,366

Time-Consumption 0.000s

Testsummary:

Info Creating testframe for " :testframe: for csp”

CSP-Frame is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

16 /[72)

Unittest for stringtools

Testresult
This test was passed with the state: . See also full trace in section [B.1.1I0]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (40)
Start-Time: 2020-02-03 18:42:08,775
Finished-Time: 2020-02-03 18:42:08,775
Time-Consumption 0.000s
Testsummary:
Info Creating testframe for 'b':testframe: for csp”

CSP-Frame is correct (Content <class 'ValueError'> and Type is <class 'type'>).

3.5.3 Frame processing

Description
The CSP Module shall support a class including a method to process stream snipets of variable length. This Method

shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation

Support message analysis of a stream with every size.

Fitcriterion

At least one frame given in at least two snippets is identified correctly.

Testresult
This test was passed with the state: . See also full trace in section [A.1.11]
Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (41)
Start-Time: 2020-02-03 18:42:08,367
Finished-Time: 2020-02-03 18:42:08,367
Time-Consumption 0.001s
Testsummary:
Info Processing testframe: ":testframe: for csp/n” in two snippets
First processed CSP-Snippet is correct (Content [] and Type is <type 'list'>).
Final processed CSP-Frame is correct (Content [':testframe: for csp’] and Type is <type 'list’>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.11]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (41)
Start-Time: 2020-02-03 18:42:08,775
Finished-Time: 2020-02-03 18:42:08,776

17/

Unittest for stringtools

Time-Consumption 0.001s

Testsummary:

Info Processing testframe: 'b’:testframe: for csp/n” in two snippets
First processed CSP-Snippet is correct (Content [] and Type is <class 'list'>).
Final processed CSP-Frame is correct (Content [b':testframe: for csp’] and Type is <class

'list’>).

3.56.4 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation
Type restriction.

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state: . See also full trace in section [A.1.12]
Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (42)
Start-Time: 2020-02-03 18:42:08,367
Finished-Time: 2020-02-03 18:42:08,369
Time-Consumption 0.001s
Testsummary:
Info Processing wrong data (list)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type’>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Info Processing wrong data (int)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type'>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Info Processing wrong data (unicode)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type'>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.12]
Testrun: python 3.6.9 (final)

18/[77]

Unittest for stringtools

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (42)

Start-Time: 2020-02-03 18:42:08,776

Finished-Time: 2020-02-03 18:42:08,778

Time-Consumption 0.001s

Testsummary:

Info Processing wrong data (list)
Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Info Processing wrong data (int)
Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Info Processing wrong data (str)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b" and Type is <class 'bytes'>).

3.6 Serial Transfer Protocol (STP)

The Serial Transfer Protocol shall use a start pattern and an end pattern to identify a message in a stream. Both

patterns shall be a two byte values starting with the same (sync-)byte.

3.6.1 Frame creation

Description

A frame creation method shall create a frame out of given input data.

Reason for the implementation

Message or Frame generation for streams (e.g. data transfer via bluetooth, ethernet, ...).

Fitcriterion

Creation of a testframe and checking the result.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.13]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (46)
Start-Time: 2020-02-03 18:42:08,369

Finished-Time: 2020-02-03 18:42:08,369

Time-Consumption 0.000s

Testsummary:

Info Creating testframe for " testframe for stp”

STP-Frame is correct (Content ":<testframe for stp:>" and Type is <type 'str’>).

19/[7]

Unittest for stringtools

Testresult
This test was passed with the state: . See also full trace in section [B.1.13]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (46)
Start-Time: 2020-02-03 18:42:08,778
Finished-Time: 2020-02-03 18:42:08,778
Time-Consumption 0.000s
Testsummary:
Info Creating testframe for 'b'testframe for stp”

STP-Frame is correct (Content b":<testframe for stp:>" and Type is <class 'bytes'>).

3.6.2 Frame creation - Start pattern and end pattern inside a message

Description
The frame creation method shall support existance of the start or end pattern in the data to be framed.

Reason for the implementation
Possibility to send any kind of data (including the patterns).

Fitcriterion

Creation of a testframe out of data including at least one start pattern and one end pattern and checking the result.

Testresult
This test was passed with the state: . See also full trace in section [A.1.14]
Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (47)
Start-Time: 2020-02-03 18:42:08,369
Finished-Time: 2020-02-03 18:42:08,369
Time-Consumption 0.000s
Testsummary:
Info Creating testframe including start and end pattern for " testframe for :<stp:>"
STP-Frame is correct (Content ":<testframe for :=<stp:=:>" and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.14]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (47)
Start-Time: 2020-02-03 18:42:08,778
Finished-Time: 2020-02-03 18:42:08,779

Time-Consumption 0.001s

20/ [72]

Testsummary:

Unittest for stringtools

Info

Creating testframe including start and end pattern for 'b'testframe for :<stp:>"
STP-Frame is correct (Content b":<testframe for :=<stp:=:>" and Type is <class 'bytes'>).

3.6.3 Frame processing

Description

The STP Module shall support a class including a method to process stream snipets of variable length. This Method

shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation

Support message analysis of a stream with every size.

Fitcriterion

At least one frame given in at least two snippets is identified correctly.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.15]

Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (48)
Start-Time: 2020-02-03 18:42:08,370
Finished-Time: 2020-02-03 18:42:08,371
Time-Consumption 0.001s
Testsummary:
Info Processing testframe: ":<testframe for stp:>"
First processed STP snippet is correct (Content [| and Type is <type 'list’>).
Final processed STP snippet is correct (Content ['testframe for stp’] and Type is <type 'list’>).
Testresult

This test was passed with the state:

. See also full trace in section [B.1.15]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (48)
Start-Time: 2020-02-03 18:42:08,779

Finished-Time: 2020-02-03 18:42:08,780

Time-Consumption 0.001s

Testsummary:

Info Processing testframe: 'b’:<testframe for stp:>"

First processed STP snippet is correct (Content [| and Type is <class 'list'>).
Final processed STP snippet is correct (Content [b'testframe for stp'] and Type is <class 'list’>).

21/ 72

Unittest for stringtools

3.6.4 Frame processing - Input data type error

Description

If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation

Type restriction.

Fitcriterion

At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult

This test was passed with the state:

. See also full trace in section [A.1.16]

Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (49)
Start-Time: 2020-02-03 18:42:08,371
Finished-Time: 2020-02-03 18:42:08,374
Time-Consumption 0.003s
Testsummary:
Info Processing wrong data (list)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type’>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Info Processing wrong data (int)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type’>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Info Processing wrong data (unicode)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type’>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Testresult

This test was passed with the state:

. See also full trace in section [B.1.16]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (49)
Start-Time: 2020-02-03 18:42:08,780

Finished-Time: 2020-02-03 18:42:08,781

Time-Consumption 0.001s

Testsummary:

Info Processing wrong data (list)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class "type'>).
Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

22/ 73]

Info

Info

Unittest for stringtools

Processing wrong data (int)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Processing wrong data (str)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b" and Type is <class 'bytes'>).

3.6.5 Frame processing - Start pattern and end pattern inside a message

Reason for the implementation

Possibility to send any kind of data (including the patterns).

Testresult
This test was passed with the state: . See also full trace in section [A.1.17]
Testrun: python 2.7.17 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (50)
Start-Time: 2020-02-03 18:42:08,374
Finished-Time: 2020-02-03 18:42:08,375
Time-Consumption 0.001s
Testsummary:
Info Processing testframe: ":<testframe for :=<stp:=:>"
Processed STP-Frame is correct (Content ['testframe for :<stp:>'] and Type is <type 'list’>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.17]
Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (50)
Start-Time: 2020-02-03 18:42:08,781
Finished-Time: 2020-02-03 18:42:08,782
Time-Consumption 0.001s
Testsummary:
Info Processing testframe: 'b":<testframe for :=<stp:=:>"

Processed STP-Frame is correct (Content [b'testframe for :<stp:>'] and Type is <class 'list'>).

3.6.6 Frame processing - Data before the start pattern

Description

Data before the start pattern shall be ignored. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

23 /72

Testresult

This test was passed with the state:

Unittest for stringtools

. See also full trace in section [A.1.18]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (51)

Start-Time: 2020-02-03 18:42:08,375

Finished-Time: 2020-02-03 18:42:08,376

Time-Consumption 0.001s

Testsummary:

Info Processing testframe: " _:<testframe for stp:>"

Processed STP-Frame is correct (Content ['testframe for stp'] and Type is <type 'list">).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.18]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (51)
Start-Time: 2020-02-03 18:42:08,782

Finished-Time: 2020-02-03 18:42:08,782

Time-Consumption 0.001s

Testsummary:

Info Processing testframe: 'b'_:<testframe for stp:>"

Processed STP-Frame is correct (Content [b'testframe for stp'] and Type is <class 'list'>).

3.6.7 Frame processing - Incorrect start patterns

Description

On receiving an incorrect start pattern, STP shall stay in ESCAPE_1, in case of data sync was received twice or back to

state IDLE in all other faulty start patterns starting with data sync. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.19]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (52)
Start-Time: 2020-02-03 18:42:08,376

Finished-Time: 2020-02-03 18:42:08,377

Time-Consumption 0.001s

Testsummary:

Info Processing data with an insufficient start pattern.

24/

Unittest for stringtools

Return value list if processing incorrect start of frame is correct (Content [[]] and Type is <type
list'>).
State after processing incorrect start of frame is correct (Content 0 and Type is <type 'int'>).

Info Processing data with an insufficient start pattern (two times sync).
Return value list if processing data_sync twice is correct (Content [[]] and Type is <type 'list’>).
State after processing data_sync twice is correct (Content 1 and Type is <type 'int’>).
Testresult

This test was passed with the state:

. See also full trace in section [B.1.19]

Testrun: python 3.6.9 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (52)
Start-Time: 2020-02-03 18:42:08,782
Finished-Time: 2020-02-03 18:42:08,783
Time-Consumption 0.001s
Testsummary:
Info Processing data with an insufficient start pattern.
Return value list if processing incorrect start of frame is correct (Content [[]] and Type is <class
'list'>).
State after processing incorrect start of frame is correct (Content 0 and Type is <class 'int'>).
Info Processing data with an insufficient start pattern (two times sync).

Return value list if processing data_sync twice is correct (Content [[]] and Type is <class 'list’>).

State after processing data_sync twice is correct (Content 1 and Type is <class 'int'>).

3.6.8 Frame processing - Incorrect end pattern

Description

On receiving an incorrect end pattern, STP shall change to state STORE_DATA, in case of a start pattern, to ESCAPE_1,
in case of data sync was received twice or back to state IDLE in all other faulty end patterns starting with data sync. A

warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.20]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (53)
Start-Time: 2020-02-03 18:42:08,377

Finished-Time: 2020-02-03 18:42:08,380

Time-Consumption 0.003s

Testsummary:

Info Processing data with an insufficient end pattern.

25/ [72]

Unittest for stringtools

Return value list if processing data_sync and data again after start of frame is correct (Content
[[]] and Type is <type 'list'>).
State after processing data_sync and data again after start of frame is correct (Content 0 and
Type is <type 'int'>).
Buffer size after processing data with insufficient end pattern is correct (Content 0 and Type is
<type 'int'>).
Info Processing data with an insufficient end pattern (start pattern instead of end pattern).
Return value list if processing 2nd start of frame is correct (Content [[]] and Type is <type
list'>).
State after processing 2nd start of frame is correct (Content 3 and Type is <type 'int'>).
Buffer size after processing 2nd start of frame is correct (Content 0 and Type is <type 'int’>).
Info Processing data with an insufficient end pattern (two times sync instead of end pattern).
Return value list if processing data_sync twice after start of frame is correct (Content [[]] and
Type is <type 'list'>).
State after processing data_sync twice after start of frame is correct (Content 1 and Type is

<type 'int'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.20]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (53)

Start-Time: 2020-02-03 18:42:08,783

Finished-Time: 2020-02-03 18:42:08,785

Time-Consumption 0.002s

Testsummary:

Info Processing data with an insufficient end pattern.
Return value list if processing data_sync and data again after start of frame is correct (Content
[[]] and Type is <class 'list'>).
State after processing data_sync and data again after start of frame is correct (Content 0 and
Type is <class 'int">).
Buffer size after processing data with insufficient end pattern is correct (Content 0 and Type is
<class 'int'>).

Info Processing data with an insufficient end pattern (start pattern instead of end pattern).
Return value list if processing 2nd start of frame is correct (Content [[]] and Type is <class
list'>).
State after processing 2nd start of frame is correct (Content 3 and Type is <class 'int'>).
Buffer size after processing 2nd start of frame is correct (Content 0 and Type is <class 'int'>).

Info Processing data with an insufficient end pattern (two times sync instead of end pattern).

Return value list if processing data_sync twice after start of frame is correct (Content [[]] and
Type is <class 'list'>).

State after processing data_sync twice after start of frame is correct (Content 1 and Type is
<class 'int">).

3.6.9 Frame processing - After state corruption

Description
The state of STP shall be set to IDLE, after an unknown state was recognised. The currently processed data shall be

26/

Unittest for stringtools

processed again. An error shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.21]

Testrun: python 2.7.17 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (54)

Start-Time: 2020-02-03 18:42:08,380

Finished-Time: 2020-02-03 18:42:08,381

Time-Consumption 0.001s

Testsummary:

Info Corrupting stp state and processing data.
Return value list if processing start of a frame after state had been corrupted is correct (Content
[[]] and Type is <type 'list'>).
State after processing start of a frame after state had been corrupted is correct (Content 3 and
Type is <type 'int'>).
Buffer size after corrupting stp state is correct (Content 2 and Type is <type 'int'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.21]

Testrun: python 3.6.9 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (54)
Start-Time: 2020-02-03 18:42:08,785

Finished-Time: 2020-02-03 18:42:08,786

Time-Consumption 0.001s

Testsummary:

Info Corrupting stp state and processing data.

Return value list if processing start of a frame after state had been corrupted is correct (Content
[[]] and Type is <class 'list’>).

State after processing start of a frame after state had been corrupted is correct (Content 3 and
Type is <class 'int'>).

Buffer size after corrupting stp state is correct (Content 2 and Type is <class 'int'>).

27/

Unittest for stringtools

A Trace for testrun with python 2.7.17 (final)

A.1 Tests with status Info (21)
A.1.1 Physical representation
Description

The library stringtools shall have a method physical_repr, transforming a float or integer value to a string with a
1 to 3 digit value followed by the physical prefix for the unit.

Testresult
This test was passed with the state:

Physical representation for 1.17e-10 is correct (Content '117p" and Type is <type 'str'>).

Result (Physical representation for 1.17e-10): '117p' (<type 'str'>)

Expectation (Physical representation for 1.17e-10): result = '117p' (<type 'str'>)

Physical representation for 5.4e-08 is correct (Content '54n’ and Type is <type 'str'>).

Result (Physical representation for 5.4e-08): 'b4n' (<type 'str'>)

Expectation (Physical representation for 5.4e-08): result = '54n' (<type 'str'>)

Physical representation for 2.53e-05 is correct (Content '25.3/xc2/xb5" and Type is <type 'str'>).

Result (Physical representation for 2.53e-05): '25.3\xc2\xb5' (<type 'str'>)
Expectation (Physical representation for 2.53e-05): result = '25.3\xc2\xb5' (<type 'str'>)

Physical representation for 0.1 is correct (Content '100m’ and Type is <type 'str'>).

Result (Physical representation for 0.1): '100m' (<type 'str'>)

Expectation (Physical representation for 0.1): result = '100m' (<type 'str'>)

Physical representation for 1 is correct (Content '1" and Type is <type 'str'>).

Result (Physical representation for 1): '1' (<type 'str'>)

Expectation (Physical representation for 1): result = '1' (<type 'str'>)

Physical representation for 1000 is correct (Content "1k’ and Type is <type 'str'>).

Result (Physical representation for 1000): '1lk' (<type 'str'>)

Expectation (Physical representation for 1000): result = 'lk' (<type 'str'>)

Physical representation for 1005001 is correct (Content '1.01M’ and Type is <type 'str'>).

28 /

Unittest for stringtools

Result (Physical representation for 1005001): '1.01M' (<type 'str'>)
Expectation (Physical representation for 1005001): result = '1.01M' (<type 'str'>)

Physical representation for 1004000000 is correct (Content '1G’ and Type is <type 'str'>).

Result (Physical representation for 1004000000): '1G' (<type 'str'>)
Expectation (Physical representation for 1004000000): result = '1G' (<type 'str'>)

Physical representation for 1003000000000 is correct (Content '1T' and Type is <type 'str'>).

Result (Physical representation for 1003000000000): 'IT' (<type 'str'>)
Expectation (Physical representation for 1003000000000): result = 'IT' (<type 'str'>)

Physical representation for 10000000000000000 is correct (Content '10P" and Type is <type 'str'>).

Result (Physical representation for 10000000000000000): '10P' (<type 'str'>)
Expectation (Physical representation for 10000000000000000): result = '10P' (<type 'str'>)

Physical representation for 17.17 is correct (Content '17.17' and Type is <type 'str'>).

Result (Physical representation for 17.17): '17.17' (<type 'str'>)
Expectation (Physical representation for 17.17): result = '17.17' (<type 'str'>)

Physical representation for 117000 is correct (Content '117k’ and Type is <type 'str’>).

Result (Physical representation for 117000): '117k' (<type 'str'>)

Expectation (Physical representation for 117000): result = '117k' (<type 'str'>)

Physical representation for 117.17 is correct (Content '117.2" and Type is <type 'str'>).

Result (Physical representation for 117.17): '117.2' (<type 'str'>)

Expectation (Physical representation for 117.17): result = '117.2' (<type 'str'>)

A.1.2 Time representation

Description
The library stringtools shall have a method physical repr, transforming an integer value to a time string like
HH:MM:SS.

Testresult
This test was passed with the state:

Time representation for 59 is correct (Content '00:59" and Type is <type 'str'>).

29 /

Unittest for stringtools

Result (Time representation for 59): '00:59' (<type 'str'>)

Expectation (Time representation for 59): result = '00:59' (<type 'str'>)

Time representation for 60 is correct (Content '01:00" and Type is <type 'str'>).

Result (Time representation for 60): '01:00' (<type 'str'>)

Expectation (Time representation for 60): result = '01:00' (<type 'str'>)

Time representation for 3599 is correct (Content '59:59" and Type is <type 'str'>).

Result (Time representation for 3599): '59:59' (<type 'str'>)

Expectation (Time representation for 3599): result = '59:59' (<type 'str'>)

Time representation for 3600 is correct (Content '01:00:00" and Type is <type 'str'>).

Result (Time representation for 3600): '01:00:00' (<type 'str'>)

Expectation (Time representation for 3600): result = '01:00:00' (<type 'str'>)

Time representation for 86399 is correct (Content '23:59:59" and Type is <type 'str'>).

Result (Time representation for 86399): '23:59:59' (<type 'str'>)

Expectation (Time representation for 86399): result = '23:59:59' (<type 'str'>)

Time representation for 86400 is correct (Content '1D" and Type is <type 'str'>).

Result (Time representation for 86400): '1D' (<type 'str'>)

Expectation (Time representation for 86400): result = '1D' (<type 'str'>)

Time representation for 86459 is correct (Content '1D 00:59" and Type is <type 'str'>).

Result (Time representation for 86459): '1D 00:59' (<type 'str'>)

Expectation (Time representation for 86459): result = '1D 00:59' (<type 'str'>)

Time representation for 90000 is correct (Content '1D 01:00:00' and Type is <type 'str'>).

Result (Time representation for 90000): '1D 01:00:00' (<type 'str'>)
Expectation (Time representation for 90000): result = '1D 01:00:00' (<type 'str'>)

A.1.3 Fraction representation

Description
The library stringtools shall have a method frac_repr, transforming a float or integer value to a fraction string with

a limited denominator.

30/ [72]

Unittest for stringtools

Testresult
This test was passed with the state:

Fraction representation for 17.4 is correct (Content '87/5" and Type is <type 'str'>).

Result (Fraction representation for 17.4): '87/5' (<type 'str'>)
Expectation (Fraction representation for 17.4): result = '87/5' (<type 'str'>)

Fraction representation for 0.25 is correct (Content '1/4" and Type is <type 'str'>).

Result (Fraction representation for 0.25): '1/4' (<type 'str'>)
Expectation (Fraction representation for 0.25): result = '1/4' (<type 'str'>)

Fraction representation for 0.1 is correct (Content '1/10" and Type is <type 'str'>).

Result (Fraction representation for 0.1): '1/10' (<type 'str'>)
Expectation (Fraction representation for 0.1): result = '1/10' (<type 'str'>)

Fraction representation for 0.01666667 is correct (Content '1/60" and Type is <type 'str'>).

Result (Fraction representation for 0.01666667): '1/60' (<type 'str'>)
Expectation (Fraction representation for 0.01666667): result = '1/60' (<type 'str'>)

A.1.4 Hexadecimal Values

Description

A Stream shall be converted to a human readable String containing all bytes as hexadecimal values seperated by a Space.

Reason for the implementation

Make non printable characters printable.

Fitcriterion

A stream shall be converted at least once and the hex values shall exist in the returnvalue in the correct order.

Testresult
This test was passed with the state:

Info Checking test pattern de ad be ef (<type 'str'>).

Pattern included all relevant information in the correct order.

Return value of hexlify is (4): de ad be ef
Using upper string for comparison: (4): DE AD BE EF

"DE" found in "(4): DE AD BE EF"... Reducing pattern
"AD" found in "AD BE EF"... Reducing pattern

"BE" found in "BE EF"... Reducing pattern

"EF" found in "EF"... Reducing pattern

31/

Unittest for stringtools

A.1.5 Number of Bytes

Description
The Length of a Stream surrounded by brakets shall be included in the human readable string.

Reason for the implementation
Show the length of a Stream without counting the seperated values.

Fitcriterion

The described pattern including the decimal number of bytes is included in the string for at least one Stream.

Testresult
This test was passed with the state:

Info Checking test pattern with length 4.

'(4) is in '(4): de ad be ef’ at position 0

A.1.6 CRLF-Filter

Description

The module stringtools shall have a method to replace carriage return and line feed to their escaped representation.

Reason for the implementation
Replace these characters to make output printable (e.g. for logging a string based protocol).

Fitcriterion

Filter at least one string and check at least one CR and one LF representation.

Testresult
This test was passed with the state:

Info Checking test pattern with length 4.

Returnvalue of linefeed_filter is correct (Content 'test//r//n123//r//n" and Type is <type 'str'>).

Result (Returnvalue of linefeed_filter): 'test\\r\\n123\\r\\n' (<type 'str'>)
Expectation (Returnvalue of linefeed_filter): result = 'test\\r\\n123\\r\\n' (<type 'str'>)

A.1.7 Compress

Description

The module stringtools shall have a method compressing a Stream with gzip.

32/

Unittest for stringtools

Reason for the implementation
Speed up transfer with low transfer rate.

Fitcriterion
Compressed Stream is extractable and results in the original data.

Testresult
This test was passed with the state:

Info Compressing Streams result in differnt streams with the same input stream. Therefore the test will compare
the decompressed data.

Info Compressing stream: (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff f ff fF ff ff ff ff ff fF fF fF

GZIP: Finished to compress a string (compression_rate=0.867, consumed_time=0.0s).

Info Extracting stream: (26): 1f 8b 08 00 70 5b 38 5e 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e 00 00 00

GZIP: Finished to extract a string (compression_rate=0.867, consumed_time=0.0s).

Extracted data is correct (Content (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff fF ff ff ff ff ff
ff ff ff f ff ff ff ff and Type is <type 'str'>).

Result (Extracted data): (30): 00 00 00 00 00 00 00 00 00 00O 00 00 00 00 00 ff ff ff ff ff ff
-~ ff £ff £ff ff ff ff ff ff ff (<type 'str'>)

Expectation (Extracted data): result = (30): 00 00 00 00 00 00 00 OO 00 00 OO 00 00 00 00 ff
- ff ff ff ff ff ff ff ff ff ff ff ff ff ff (<type 'str'>)

A.1.8 Extract

Description

The module stringtools shall have a method extracting a Stream with gzip.

Reason for the implementation
Speed up transfer with low transfer rate.

Fitcriterion

Extracted Stream is equal to the original compressed data.

33/

Unittest for stringtools

Testresult
This test was passed with the state:

Info Extracting stream: (26): 1f 8b 08 00 34 0 04 5d 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e 00 00 00

GZIP: Finished to extract a string (compression_rate=0.867, consumed_time=0.0s).

Extracted data is correct (Content '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff ff ff
ff ff ff £f ff ff ff ff' and Type is <type 'str'>).

Result (Extracted data): '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff
- ff f£ff £ff ff ff ff ff ff £ff £ff' (<type 'str'>)

Expectation (Extracted data): result = '(30): 00 00 00 00 00 00 00 00 00 00 OO OO OO OO 00 ff
- ff ff ff ff ff ff ff ff ff ff ff ff ff ff' (<type 'str'>)

A.1.9 Frame creation

Description

The CSP module shall support a method to create a Frame from a stream.

Reason for the implementation

Simple message or frame generation for streams (e.g. Keyboard (user input), RFID-Reader, ...).

Fitcriterion

Creation of a testframe and checking the result.

Testresult
This test was passed with the state:

Info Creating testframe for ":testframe: for csp”

CSP-Frame is correct (Content ":testframe: for csp/n" and Type is <type 'str'>).

Result (CSP-Frame): ':testframe: for csp\n' (<type 'str'>)

Expectation (CSP-Frame): result = ':testframe: for csp\n' (<type 'str'>)
A.1.10 Frame creation error

Description

The Frame creation Method shall raise ValueError, if a frame separation character is in the Source-String.

Reason for the implementation
String including separation charcter will be splitted in pieces while processing after transport.

34/

Unittest for stringtools

Fitcriterion
ValueErroro is raised for at least one String including the separation character.

Testresult
This test was passed with the state:

Info Creating testframe for " :testframe: for csp”

CSP-Frame is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (CSP-Frame): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (CSP-Frame): result = <type 'exceptions.ValueError'> (<type 'type'>)

A.1.11 Frame processing

Description
The CSP Module shall support a class including a method to process stream snipets of variable length. This Method
shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation
Support message analysis of a stream with every size.

Fitcriterion
At least one frame given in at least two snippets is identified correctly.

Testresult
This test was passed with the state:

Info Processing testframe: ":testframe: for csp/n” in two snippets

CSP: Leaving data in buffer (to be processed next time): (10): 3a 74 65 73 74 66 72 61 6d 65
CSP: message identified - (19): 3a 74 65 73 74 66 72 61 6d 65 3a 20 66 6f 72 20 63 73 70

First processed CSP-Snippet is correct (Content [] and Type is <type 'list'>).

Result (First processed CSP-Snippet): [] (<type 'list'>)

Expectation (First processed CSP-Snippet): result = [] (<type 'list'>)

Final processed CSP-Frame is correct (Content [":testframe: for csp’] and Type is <type 'list'>).

Result (Final processed CSP-Frame): [':testframe: for csp'] (<type 'list'>)

Expectation (Final processed CSP-Frame): result = [':testframe: for csp'] (<type 'list'>)

35/

Unittest for stringtools

A.1.12 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation
Type restriction.

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state:

Info Processing wrong data (list)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str’>).

Result (Buffer still empty): '' (<type 'str'>)
Expectation (Buffer still empty): result = '' (<type 'str'>)

Info Processing wrong data (int)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str'>).

Result (Buffer still empty): '' (<type 'str'>)
Expectation (Buffer still empty): result = '' (<type 'str'>)

Info Processing wrong data (unicode)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

36 /

Unittest for stringtools

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str’>).

Result (Buffer still empty): '' (<type 'str'>)

Expectation (Buffer still empty): result = '' (<type 'str'>)
A.1.13 Frame creation

Description
A frame creation method shall create a frame out of given input data.

Reason for the implementation
Message or Frame generation for streams (e.g. data transfer via bluetooth, ethernet, ...).

Fitcriterion

Creation of a testframe and checking the result.

Testresult
This test was passed with the state:

Info Creating testframe for " testframe for stp”

STP-Frame is correct (Content ":<testframe for stp:>" and Type is <type 'str'>).

Result (STP-Frame): ':<testframe for stp:>' (<type 'str'>)

Expectation (STP-Frame): result = ':<testframe for stp:>' (<type 'str'>)
A.1.14 Frame creation - Start pattern and end pattern inside a message

Description

The frame creation method shall support existance of the start or end pattern in the data to be framed.

Reason for the implementation
Possibility to send any kind of data (including the patterns).

Fitcriterion

Creation of a testframe out of data including at least one start pattern and one end pattern and checking the result.

37/

Unittest for stringtools

Testresult
This test was passed with the state:

Info Creating testframe including start and end pattern for "testframe for :<stp:>"

STP-Frame is correct (Content ":<testframe for :=<stp:=:>" and Type is <type 'str'>).

Result (STP-Frame): ':<testframe for :=<stp:=>:>' (<type 'str'>)

Expectation (STP-Frame): result = ':<testframe for :=<stp:=>:>' (<type 'str'>)
A.1.15 Frame processing
Description

The STP Module shall support a class including a method to process stream snipets of variable length. This Method
shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation
Support message analysis of a stream with every size.

Fitcriterion
At least one frame given in at least two snippets is identified correctly.

Testresult
This test was passed with the state:

Info Processing testframe: ":<testframe for stp:>"

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (17): 74 65 73 74 66 72 61 6d 65 20 66 6f 72 20 73 74 70

First processed STP snippet is correct (Content [| and Type is <type 'list'>).

Result (First processed STP snippet): [] (<type 'list'>)
Expectation (First processed STP snippet): result = [] (<type 'list'>)

Final processed STP snippet is correct (Content ['testframe for stp’] and Type is <type 'list'>).

Result (Final processed STP snippet): ['testframe for stp'] (<type 'list'>)
Expectation (Final processed STP snippet): result = ['testframe for stp'] (<type 'list'>)

38/

Unittest for stringtools

A.1.16 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation
Type restriction.

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state:

Info Processing wrong data (list)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str’>).

Result (Buffer still empty): '' (<type 'str'>)
Expectation (Buffer still empty): result = '' (<type 'str'>)

Info Processing wrong data (int)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str'>).

Result (Buffer still empty): '' (<type 'str'>)
Expectation (Buffer still empty): result = '' (<type 'str'>)

Info Processing wrong data (unicode)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

39/

Unittest for stringtools

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str’>).

Result (Buffer still empty): '' (<type 'str'>)

Expectation (Buffer still empty): result = '' (<type 'str'>)

A.1.17 Frame processing - Start pattern and end pattern inside a message

Reason for the implementation
Possibility to send any kind of data (including the patterns).

Testresult
This test was passed with the state:

Info Processing testframe: " :<testframe for :=<stp:=:>"

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: store sync pattern (3a 3d) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: store sync pattern (3a 3d) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (21): 74 65 73 74 66 72 61 6d 65 20 66 6f 72 20 3a 3c 73 74 70 3a 3e

Processed STP-Frame is correct (Content ['testframe for :<stp:>'] and Type is <type 'list'>).

Result (Processed STP-Frame): ['testframe for :<stp:>'] (<type 'list'>)

Expectation (Processed STP-Frame): result = ['testframe for :<stp:>'] (<type 'list'>)
A.1.18 Frame processing - Data before the start pattern

Description
Data before the start pattern shall be ignored. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

40/

Unittest for stringtools

Testresult
This test was passed with the state:

Info Processing testframe: " _:<testframe for stp:>"

STP: no data sync (5f) received => ignoring byte
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (17): 74 65 73 74 66 72 61 64 65 20 66 6f 72 20 73 74 70

Processed STP-Frame is correct (Content ['testframe for stp’] and Type is <type 'list'>).

Result (Processed STP-Frame): ['testframe for stp'] (<type 'list'>)

Expectation (Processed STP-Frame): result = ['testframe for stp'] (<type 'list'>)

A.1.19 Frame processing - Incorrect start patterns

Description
On receiving an incorrect start pattern, STP shall stay in ESCAPE_1, in case of data sync was received twice or back to
state IDLE in all other faulty start patterns starting with data sync. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Processing data with an insufficient start pattern.

Sending ':1' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1
STP: no start pattern (3a 31) received => changing state STP_STATE_ESCAPE_1 -> STP_STATE_IDLE

Return value list if processing incorrect start of frame is correct (Content [[]] and Type is <type 'list’>).

Result (Return value list if processing incorrect start of frame): [[1] (<type 'list'>)

Expectation (Return value list if processing incorrect start of frame): result = [[]]
- (<type 'list'>)

State after processing incorrect start of frame is correct (Content 0 and Type is <type 'int’>).

41/

Unittest for stringtools

Result (State after processing incorrect start of frame): 0 (<type 'int'>)

Expectation (State after processing incorrect start of frame): result = 0 (<type 'int'>)

Info Processing data with an insufficient start pattern (two times sync).

Sending '::' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1
STP: 2nd data sync (3a) received => keep state

Return value list if processing data_sync twice is correct (Content [[]] and Type is <type 'list’>).

Result (Return value list if processing data_sync twice): [[1] (<type 'list'>)

Expectation (Return value list if processing data_sync twice): result = [[] 1 (<type
< 'list'>)

State after processing data_sync twice is correct (Content 1 and Type is <type 'int'>).

Result (State after processing data_sync twice): 1 (<type 'int'>)

Expectation (State after processing data_sync twice): result = 1 (<type 'int'>)

A.1.20 Frame processing - Incorrect end pattern

Description

On receiving an incorrect end pattern, STP shall change to state STORE_DATA, in case of a start pattern, to ESCAPE_1,
in case of data sync was received twice or back to state IDLE in all other faulty end patterns starting with data sync. A
warning shall be given to the logger.

Reason for the implementation
Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Processing data with an insufficient end pattern.

Sending ':<te:d' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2
STP: data (64) received => changing state STP_STATE_ESCAPE_2 -> STP_STATE_IDLE
STP: Chunking "(2): 74 65" from buffer

Return value list if processing data_sync and data again after start of frame is correct (Content [[]] and
Type is <type 'list'>).

42/

Result (Return value list if processing data_sync and data again after start of frame): [[
< 11 (<type 'list'>)

Expectation (Return value list if processing data_sync and data again after start of frame):
— result = [[]] (<type 'list'>)

State after processing data_sync and data again after start of frame is correct (Content 0 and Type is
<type 'int'>).

Result (State after processing data_sync and data again after start of frame): O (<type

< 'int'>)

Expectation (State after processing data_sync and data again after start of frame): result =
— 0 (<type 'int'>)

Buffer size after processing data with insufficient end pattern is correct (Content 0 and Type is <type
"int'>).

Result (Buffer size after processing data with insufficient end pattern): O (<type 'int'>)

Expectation (Buffer size after processing data with insufficient end pattern): result = 0
— (<type 'int'>)

Info Processing data with an insufficient end pattern (start pattern instead of end pattern).

Sending ':<te:<' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: Chunking "(2): 74 65" from buffer

Return value list if processing 2nd start of frame is correct (Content [[]] and Type is <type 'list'>).

Result (Return value list if processing 2nd start of frame): [[]] (<type 'list'>)

Expectation (Return value list if processing 2nd start of frame): result = [[] 1 (<type
- 'list'>)

State after processing 2nd start of frame is correct (Content 3 and Type is <type 'int'>).

Result (State after processing 2nd start of frame): 3 (<type 'int'>)

Expectation (State after processing 2nd start of frame): result = 3 (<type 'int'>)

Buffer size after processing 2nd start of frame is correct (Content 0 and Type is <type 'int">).

Result (Buffer size after processing 2nd start of frame): O (<type 'int'>)

Expectation (Buffer size after processing 2nd start of frame): result = 0 (<type 'int'>)

Info Processing data with an insufficient end pattern (two times sync instead of end pattern).

Unittest for stringtools

Sending ':<te::' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2
STP: second data sync (3a) received => changing state STP_STATE_ESCAPE_2 -> STP_STATE_ESCAPE_1
STP: Chunking "(2): 74 65" from buffer

Return value list if processing data_sync twice after start of frame is correct (Content [[|]] and Type is
<type 'list'>).

Result (Return value list if processing data_sync twice after start of frame): [[]]
- (<type 'list'>)

Expectation (Return value list if processing data_sync twice after start of frame): result =
- [[11 (<type 'list'>)

State after processing data_sync twice after start of frame is correct (Content 1 and Type is <type 'int'>).

Result (State after processing data_sync twice after start of frame): 1 (<type 'int'>)

Expectation (State after processing data_sync twice after start of frame): result = 1 (<type
— 'int'>)

A.1.21 Frame processing - After state corruption
Description

The state of STP shall be set to IDLE, after an unknown state was recognised. The currently processed data shall be
processed again. An error shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Corrupting stp state and processing data.

44 /

Unittest for stringtools

Sending ':<te' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

Setting state of stp to 255.

Sending ':<te' to stp.

STP: unknown state (255) => adding value (3a) back to data again and changing state ->
— STP_STATE_IDLE

STP: Chunking "(2): 74 65" from buffer

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

Return value list if processing start of a frame after state had been corrupted is correct (Content [[]] and
Type is <type 'list’>).

Result (Return value list if processing start of a frame after state had been corrupted): [[
-~ 11 (<type 'list'>)

Expectation (Return value list if processing start of a frame after state had been

— corrupted): result = [[1] (<type 'list'>)

State after processing start of a frame after state had been corrupted is correct (Content 3 and Type is
<type 'int">).

Result (State after processing start of a frame after state had been corrupted): 3 (<type

— 'int‘>)

Expectation (State after processing start of a frame after state had been corrupted): result
— = 3 (<type 'int'>)

Buffer size after corrupting stp state is correct (Content 2 and Type is <type 'int'>).

Result (Buffer size after corrupting stp state): 2 (<type 'int'>)

Expectation (Buffer size after corrupting stp state): result = 2 (<type 'int'>)

B Trace for testrun with python 3.6.9 (final)

B.1 Tests with status Info (21)
B.1.1 Physical representation

Description
The library stringtools shall have a method physical_repr, transforming a float or integer value to a string with a
1 to 3 digit value followed by the physical prefix for the unit.

45/ [72

Unittest for stringtools

Testresult
This test was passed with the state:

Physical representation for 1.17e-10 is correct (Content '117p" and Type is <class 'str'>).

Result (Physical representation for 1.17e-10): '117p' (<class 'str'>)

Expectation (Physical representation for 1.17e-10): result = '117p' (<class 'str'>)

Physical representation for 5.4e-08 is correct (Content '54n" and Type is <class 'str'>).

Result (Physical representation for 5.4e-08): 'b4n' (<class 'str'>)

Expectation (Physical representation for 5.4e-08): result = 'B4n' (<class 'str'>)

Physical representation for 2.53e-05 is correct (Content '25.3" and Type is <class 'str'>).

Result (Physical representation for 2.53e-05): '25.3' (<class 'str'>)

Expectation (Physical representation for 2.53e-05): result = '25.3' (<class 'str'>)

Physical representation for 0.1 is correct (Content '100m’ and Type is <class 'str'>).

Result (Physical representation for 0.1): '100m' (<class 'str'>)

Expectation (Physical representation for 0.1): result = '100m' (<class 'str'>)

Physical representation for 1 is correct (Content '1" and Type is <class 'str'>).

Result (Physical representation for 1): '1' (<class 'str'>)

Expectation (Physical representation for 1): result = 'l' (<class 'str'>)

Physical representation for 1000 is correct (Content "1k’ and Type is <class 'str'>).

Result (Physical representation for 1000): '1k' (<class 'str'>)

Expectation (Physical representation for 1000): result = 'lk' (<class 'str'>)

Physical representation for 1005001 is correct (Content '1.01M’ and Type is <class 'str'>).

Result (Physical representation for 1005001): '1.01M' (<class 'str'>)

Expectation (Physical representation for 1005001): result = '1.01M' (<class 'str'>)

Physical representation for 1004000000 is correct (Content '1G’ and Type is <class 'str'>).

Result (Physical representation for 1004000000): '1G' (<class 'str'>)

Expectation (Physical representation for 1004000000): result = '1G' (<class 'str'>)

Physical representation for 1003000000000 is correct (Content '1T" and Type is <class 'str'>).

46 /72

Unittest for stringtools

Result (Physical representation for 1003000000000): 'IT' (<class 'str'>)
Expectation (Physical representation for 1003000000000): result = 'IT' (<class 'str'>)

Physical representation for 10000000000000000 is correct (Content '10P" and Type is <class 'str'>).

Result (Physical representation for 10000000000000000): '10P' (<class 'str'>)
Expectation (Physical representation for 10000000000000000): result = '10P' (<class 'str'>)

Physical representation for 17.17 is correct (Content '17.17" and Type is <class 'str’>).

Result (Physical representation for 17.17): '17.17' (<class 'str'>)

Expectation (Physical representation for 17.17): result = '17.17' (<class 'str'>)

Physical representation for 117000 is correct (Content '117k" and Type is <class 'str'>).

Result (Physical representation for 117000): '117k' (<class 'str'>)

Expectation (Physical representation for 117000): result = '117k' (<class 'str'>)

Physical representation for 117.17 is correct (Content '117.2" and Type is <class 'str'>).

Result (Physical representation for 117.17): '117.2' (<class 'str'>)

Expectation (Physical representation for 117.17): result = '117.2' (<class 'str'>)

B.1.2 Time representation

Description
The library stringtools shall have a method physical_repr, transforming an integer value to a time string like
HH:MM:SS.

Testresult
This test was passed with the state:

Time representation for 59 is correct (Content '00:59" and Type is <class 'str'>).

Result (Time representation for 59): '00:59' (<class 'str'>)

Expectation (Time representation for 59): result = '00:59' (<class 'str'>)

Time representation for 60 is correct (Content '01:00" and Type is <class 'str'>).

Result (Time representation for 60): '01:00' (<class 'str'>)

Expectation (Time representation for 60): result = '01:00' (<class 'str'>)

Time representation for 3599 is correct (Content '59:59" and Type is <class 'str'>).

47/

Unittest for stringtools

Result (Time representation for 3599): '59:59' (<class 'str'>)

Expectation (Time representation for 3599): result = '59:59' (<class 'str'>)

Time representation for 3600 is correct (Content '01:00:00" and Type is <class 'str'>).

Result (Time representation for 3600): '01:00:00' (<class 'str'>)

Expectation (Time representation for 3600): result = '01:00:00' (<class 'str'>)

Time representation for 86399 is correct (Content '23:59:59" and Type is <class 'str'>).

Result (Time representation for 86399): '23:59:59' (<class 'str'>)

Expectation (Time representation for 86399): result = '23:59:59' (<class 'str'>)

Time representation for 86400 is correct (Content '1D" and Type is <class 'str'>).

Result (Time representation for 86400): '1D' (<class 'str'>)

Expectation (Time representation for 86400): result = '1D' (<class 'str'>)

Time representation for 86459 is correct (Content '1D 00:59" and Type is <class 'str'>).

Result (Time representation for 86459): '1D 00:59' (<class 'str'>)

Expectation (Time representation for 86459): result = '1D 00:59' (<class 'str'>)

Time representation for 90000 is correct (Content '1D 01:00:00" and Type is <class 'str'>).

Result (Time representation for 90000): '1D 01:00:00' (<class 'str'>)
Expectation (Time representation for 90000): result = '1D 01:00:00' (<class 'str'>)

B.1.3 Fraction representation

Description
The library stringtools shall have a method frac_repr, transforming a float or integer value to a fraction string with

a limited denominator.

Testresult
This test was passed with the state:

Fraction representation for 17.4 is correct (Content '87/5' and Type is <class 'str'>).

Result (Fraction representation for 17.4): '87/5' (<class 'str'>)

Expectation (Fraction representation for 17.4): result = '87/5' (<class 'str'>)

Fraction representation for 0.25 is correct (Content '1/4" and Type is <class 'str'>).

48 /

Unittest for stringtools

Result (Fraction representation for 0.25): '1/4' (<class 'str'>)

Expectation (Fraction representation for 0.25): result = '1/4' (<class 'str'>)

Fraction representation for 0.1 is correct (Content '1/10" and Type is <class 'str'>).

Result (Fraction representation for 0.1): '1/10' (<class 'str'>)

Expectation (Fraction representation for 0.1): result = '1/10' (<class 'str'>)

Fraction representation for 0.01666667 is correct (Content '1/60" and Type is <class 'str'>).

Result (Fraction representation for 0.01666667): '1/60' (<class 'str'>)

Expectation (Fraction representation for 0.01666667): result = '1/60' (<class 'str'>)

B.1.4 Hexadecimal Values

Description
A Stream shall be converted to a human readable String containing all bytes as hexadecimal values seperated by a Space.

Reason for the implementation
Make non printable characters printable.

Fitcriterion
A stream shall be converted at least once and the hex values shall exist in the returnvalue in the correct order.

Testresult
This test was passed with the state:

Info Checking test pattern de ad be ef (<class 'bytes'>).

Pattern included all relevant information in the correct order.

Return value of hexlify is (4): de ad be ef
Using upper string for comparison: (4): DE AD BE EF

"DE" found in "(4): DE AD BE EF"... Reducing pattern
"AD" found in "AD BE EF"... Reducing pattern

"BE" found in "BE EF"... Reducing pattern

"EF" found in "EF"... Reducing pattern

B.1.5 Number of Bytes

Description
The Length of a Stream surrounded by brakets shall be included in the human readable string.

49/

Unittest for stringtools

Reason for the implementation
Show the length of a Stream without counting the seperated values.

Fitcriterion
The described pattern including the decimal number of bytes is included in the string for at least one Stream.

Testresult
This test was passed with the state:

Info Checking test pattern with length 4.

'(4)" is in '(4): de ad be ef’ at position 0

B.1.6 CRLF-Filter

Description
The module stringtools shall have a method to replace carriage return and line feed to their escaped representation.

Reason for the implementation
Replace these characters to make output printable (e.g. for logging a string based protocol).

Fitcriterion
Filter at least one string and check at least one CR and one LF representation.

Testresult
This test was passed with the state:

Info Checking test pattern with length 4.

Returnvalue of linefeed_filter is correct (Content b'test//r//n123//r//n" and Type is <class 'bytes'>).

Result (Returnvalue of linefeed_filter): b'test\\r\\n123\\r\\n' (<class 'bytes'>)

Expectation (Returnvalue of linefeed_filter): result = b'test\\r\\n123\\r\\n' (<class
< 'bytes'>)

B.1.7 Compress

Description
The module stringtools shall have a method compressing a Stream with gzip.

Reason for the implementation

Speed up transfer with low transfer rate.

50 /

Unittest for stringtools

Fitcriterion
Compressed Stream is extractable and results in the original data.

Testresult
This test was passed with the state:

Info Compressing Streams result in differnt streams with the same input stream. Therefore the test will compare
the decompressed data.

Info Compressing stream: (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff fFf ff ff ff ff f £f ff fF fF fF

GZIP: Finished to compress a string (compression_rate=0.867, consumed_time=0.0s).

Info Extracting stream: (26): 1f 8b 08 00 70 5b 38 5e 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e 00 00 00

GZIP: Finished to extract a string (compression_rate=0.867, consumed_time=0.0s).

Extracted data is correct (Content (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff and Type is <class 'bytes'>).

Result (Extracted data): (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff ff
— ff ff ff ff ff ff ff ff ff (<class 'bytes'>)

Expectation (Extracted data): result = (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff
— ff ff ff ff ff ff ff ff ff ff ff ff ff ff (<class 'bytes'>)

B.1.8 Extract

Description
The module stringtools shall have a method extracting a Stream with gzip.

Reason for the implementation
Speed up transfer with low transfer rate.

Fitcriterion
Extracted Stream is equal to the original compressed data.

Testresult
This test was passed with the state:

Info Extracting stream: (26): 1f 8b 08 00 34 0 04 5d 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e 00 00 00

GZIP: Finished to extract a string (compression_rate=0.867, consumed_time=0.0s).

Extracted data is correct (Content '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff ff ff
ff ff ff ff f ff ff ff" and Type is <class 'str'>).

51/

Unittest for stringtools

Result (Extracted data): '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff
— ff ff ff ff ff ff ff ff ff ff' (<class 'str'>)

Expectation (Extracted data): result = '(30): 00 00 00 00 00 00 00 00 00 00 OO OO OO OO 00 ff
— ff ff ff ff ff ff ff ff £f £f ff ff ff ff' (<class 'str'>)

B.1.9 Frame creation

Description
The CSP module shall support a method to create a Frame from a stream.

Reason for the implementation
Simple message or frame generation for streams (e.g. Keyboard (user input), RFID-Reader, .. .).

Fitcriterion
Creation of a testframe and checking the result.

Testresult
This test was passed with the state:

Info Creating testframe for 'b’:testframe: for csp”

CSP-Frame is correct (Content b':testframe: for csp/n’ and Type is <class 'bytes'>).

Result (CSP-Frame): b':testframe: for csp\n' (<class 'bytes'>)

Expectation (CSP-Frame): result = b':testframe: for csp\n' (<class 'bytes'>)
B.1.10 Frame creation error

Description
The Frame creation Method shall raise ValueError, if a frame separation character is in the Source-String.

Reason for the implementation
String including separation charcter will be splitted in pieces while processing after transport.

Fitcriterion

ValueErroro is raised for at least one String including the separation character.

52/

Unittest for stringtools

Testresult
This test was passed with the state:

Info Creating testframe for 'b’:testframe: for csp”

CSP-Frame is correct (Content <class "ValueError'> and Type is <class "type'>).

Result (CSP-Frame): <class 'ValueError'> (<class 'type'>)

Expectation (CSP-Frame): result = <class 'ValueError'> (<class 'type'>)
B.1.11 Frame processing
Description

The CSP Module shall support a class including a method to process stream snipets of variable length. This Method
shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation

Support message analysis of a stream with every size.

Fitcriterion
At least one frame given in at least two snippets is identified correctly.

Testresult

This test was passed with the state:

Info Processing testframe: 'b’:testframe: for csp/n” in two snippets

CSP: Leaving data in buffer (to be processed next time): (10): 3a 74 65 73 74 66 72 61 6d 65
CSP: message identified - (19): 3a 74 65 73 74 66 72 61 6d 65 3a 20 66 6f 72 20 63 73 70

First processed CSP-Snippet is correct (Content [] and Type is <class 'list'>).

Result (First processed CSP-Snippet): [] (<class 'list'>)

Expectation (First processed CSP-Snippet): result = [] (<class 'list'>)

Final processed CSP-Frame is correct (Content [b':testframe: for csp’] and Type is <class 'list'>).

Result (Final processed CSP-Frame): [b':testframe: for csp'] (<class 'list'>)

Expectation (Final processed CSP-Frame): result = [b':testframe: for csp'] (<class 'list'>)
B.1.12 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

53/

Unittest for stringtools

Reason for the implementation
Type restriction.

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state:

Info Processing wrong data (list)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b" and Type is <class 'bytes'>).

Result (Buffer still empty): b'' (<class 'bytes'>)
Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

Info Processing wrong data (int)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Result (Buffer still empty): b'' (<class 'bytes'>)
Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

Info Processing wrong data (str)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes’>).

Result (Buffer still empty): b'' (<class 'bytes'>)
Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

54 /[72)

Unittest for stringtools

B.1.13 Frame creation

Description
A frame creation method shall create a frame out of given input data.

Reason for the implementation
Message or Frame generation for streams (e.g. data transfer via bluetooth, ethernet, ...).

Fitcriterion
Creation of a testframe and checking the result.

Testresult
This test was passed with the state:

Info Creating testframe for 'b'testframe for stp”

STP-Frame is correct (Content b':<testframe for stp:>" and Type is <class 'bytes'>).

Result (STP-Frame): b':<testframe for stp:>' (<class 'bytes'>)

Expectation (STP-Frame): result = b':<testframe for stp:>' (<class 'bytes'>)

B.1.14 Frame creation - Start pattern and end pattern inside a message

Description
The frame creation method shall support existance of the start or end pattern in the data to be framed.

Reason for the implementation
Possibility to send any kind of data (including the patterns).

Fitcriterion
Creation of a testframe out of data including at least one start pattern and one end pattern and checking the result.

Testresult
This test was passed with the state:

Info Creating testframe including start and end pattern for 'b'testframe for :<stp:>"

STP-Frame is correct (Content b":<testframe for :=<stp:=:>" and Type is <class 'bytes'>).

Result (STP-Frame): b':<testframe for :=<stp:=>:>' (<class 'bytes'>)

Expectation (STP-Frame): result = b':<testframe for :=<stp:=>:>' (<class 'bytes'>)

55 /

Unittest for stringtools

B.1.15 Frame processing

Description
The STP Module shall support a class including a method to process stream snipets of variable length. This Method

shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation
Support message analysis of a stream with every size.

Fitcriterion

At least one frame given in at least two snippets is identified correctly.

Testresult
This test was passed with the state:

Info Processing testframe: 'b":<testframe for stp:>"

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (17): 74 65 73 74 66 72 61 6d 65 20 66 6f 72 20 73 74 70

First processed STP snippet is correct (Content [] and Type is <class 'list'>).

Result (First processed STP snippet): [] (<class 'list'>)

Expectation (First processed STP snippet): result = [] (<class 'list'>)

Final processed STP snippet is correct (Content [b'testframe for stp’] and Type is <class 'list'>).

Result (Final processed STP snippet): [b'testframe for stp'] (<class 'list'>)

Expectation (Final processed STP snippet): result = [b'testframe for stp'] (<class 'list'>)
B.1.16 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation

Type restriction.

56 /

Unittest for stringtools

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state:

Info Processing wrong data (list)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes’>).

Result (Buffer still empty): b'' (<class 'bytes'>)

Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

Info Processing wrong data (int)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes’>).

Result (Buffer still empty): b'' (<class 'bytes'>)

Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

Info Processing wrong data (str)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes’>).

Result (Buffer still empty): b'' (<class 'bytes'>)

Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

57 /(72

Unittest for stringtools

B.1.17 Frame processing - Start pattern and end pattern inside a message

Reason for the implementation

Possibility to send any kind of data (including the patterns).

Testresult

This test was passed with the state:

Info Processing testframe: 'b":<testframe for :=<stp:=:>"

STP:
STP:

>

STP:
STP:

STP:
STP:

STP:
STP:

STP:

data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
STP_STATE_STORE_DATA

data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

store sync pattern (3a 3d) received => changing state STP_STATE_ESCAPE_2 ->
STP_STATE_STORE_DATA

data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

store sync pattern (3a 3d) received => changing state STP_STATE_ESCAPE_2 ->
STP_STATE_STORE_DATA

data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
STP_STATE_IDLE

message identified - (21): 74 65 73 74 66 72 61 6d 65 20 66 6f 72 20 3a 3c 73 74 70 3a 3e

Processed STP-Frame is correct (Content [b'testframe for :<stp:>'] and Type is <class 'list'>).

Result (Processed STP-Frame): [b'testframe for :<stp:>'] (<class 'list'>)

Expectation (Processed STP-Frame): result = [b'testframe for :<stp:>'] (<class 'list'>)

B.1.18 Frame processing - Data before the start pattern

Description

Data before the start pattern shall be ignored. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult

This test was passed with the state:

Info Processing testframe: 'b’'_:<testframe for stp:>"

58 /

Unittest for stringtools

STP: no data sync (5f) received => ignoring byte
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (17): 74 65 73 74 66 72 61 64 65 20 66 6f 72 20 73 74 70

Processed STP-Frame is correct (Content [b'testframe for stp’] and Type is <class 'list’>).

Result (Processed STP-Frame): [b'testframe for stp'] (<class 'list'>)

Expectation (Processed STP-Frame): result = [b'testframe for stp'] (<class 'list'>)

B.1.19 Frame processing - Incorrect start patterns

Description
On receiving an incorrect start pattern, STP shall stay in ESCAPE_1, in case of data sync was received twice or back to
state IDLE in all other faulty start patterns starting with data sync. A warning shall be given to the logger.

Reason for the implementation
Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Processing data with an insufficient start pattern.

Sending b':1' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1
STP: no start pattern (3a 31) received => changing state STP_STATE_ESCAPE_1 -> STP_STATE_IDLE

Return value list if processing incorrect start of frame is correct (Content [[]] and Type is <class 'list’>).

Result (Return value list if processing incorrect start of frame): [[1] (<class 'list'>)

Expectation (Return value list if processing incorrect start of frame): result = [[]]
— (<class 'list'>)

State after processing incorrect start of frame is correct (Content 0 and Type is <class 'int'>).

Result (State after processing incorrect start of frame): O (<class 'int'>)

Expectation (State after processing incorrect start of frame): result = 0 (<class 'int'>)

Info Processing data with an insufficient start pattern (two times sync).

59 /

Unittest for stringtools

Sending b'::' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1
STP: 2nd data sync (3a) received => keep state

Return value list if processing data_sync twice is correct (Content [[]] and Type is <class 'list'>).

Result (Return value list if processing data_sync twice): [[]] (<class 'list'>)
Expectation (Return value list if processing data_sync twice): result = [[]] (<class

- ‘'list'>)

State after processing data_sync twice is correct (Content 1 and Type is <class 'int">).

Result (State after processing data_sync twice): 1 (<class 'int'>)

Expectation (State after processing data_sync twice): result = 1 (<class 'int'>)
B.1.20 Frame processing - Incorrect end pattern

Description
On receiving an incorrect end pattern, STP shall change to state STORE_DATA, in case of a start pattern, to ESCAPE_1,
in case of data sync was received twice or back to state IDLE in all other faulty end patterns starting with data sync. A

warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Processing data with an insufficient end pattern.

Sending b':<te:d' to stp.

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->

— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2
STP: data (64) received => changing state STP_STATE_ESCAPE_2 -> STP_STATE_IDLE

STP: Chunking "(2): 74 65" from buffer

Return value list if processing data_sync and data again after start of frame is correct (Content [[]] and
Type is <class 'list'>).

Result (Return value list if processing data_sync and data again after start of frame): [[
- 1 1 (<class 'list'>)

Expectation (Return value list if processing data_sync and data again after start of frame):
— result = [[]] (<class 'list'>)

State after processing data_sync and data again after start of frame is correct (Content 0 and Type is
<class 'int'>).

60/ [72]

Unittest for stringtools

Result (State after processing data_sync and data again after start of frame): O (<class

— 'int'>)

Expectation (State after processing data_sync and data again after start of frame): result =
— 0 (<class 'int'>)

Buffer size after processing data with insufficient end pattern is correct (Content 0 and Type is <class
'int">).

Result (Buffer size after processing data with insufficient end pattern): 0 (<class 'int'>)

Expectation (Buffer size after processing data with insufficient end pattern): result = O

< (<class 'int'>)

Info Processing data with an insufficient end pattern (start pattern instead of end pattern).

Sending b':<te:<' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: Chunking "(2): 74 65" from buffer

Return value list if processing 2nd start of frame is correct (Content [[]] and Type is <class 'list">).

Result (Return value list if processing 2nd start of frame): [[]] (<class 'list'>)

Expectation (Return value list if processing 2nd start of frame): result = [[]] (<class
— 'list'>)

State after processing 2nd start of frame is correct (Content 3 and Type is <class 'int'>).

Result (State after processing 2nd start of frame): 3 (<class 'int'>)

Expectation (State after processing 2nd start of frame): result = 3 (<class 'int'>)

Buffer size after processing 2nd start of frame is correct (Content 0 and Type is <class 'int'>).

Result (Buffer size after processing 2nd start of frame): 0 (<class 'int'>)

Expectation (Buffer size after processing 2nd start of frame): result = 0 (<class 'int'>)

Info Processing data with an insufficient end pattern (two times sync instead of end pattern).

61

Unittest for stringtools

Sending b':<te::' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2
STP: second data sync (3a) received => changing state STP_STATE_ESCAPE_2 -> STP_STATE_ESCAPE_1
STP: Chunking "(2): 74 65" from buffer

Return value list if processing data_sync twice after start of frame is correct (Content [[|]] and Type is
<class 'list">).

Result (Return value list if processing data_sync twice after start of frame): [[]]
— (<class 'list'>)

Expectation (Return value list if processing data_sync twice after start of frame): result =
< [[11 (Lclass 'list'>)

State after processing data_sync twice after start of frame is correct (Content 1 and Type is <class 'int’>).

Result (State after processing data_sync twice after start of frame): 1 (<class 'int'>)

Expectation (State after processing data_sync twice after start of frame): result = 1 (<class
— 'int'>)

B.1.21 Frame processing - After state corruption
Description

The state of STP shall be set to IDLE, after an unknown state was recognised. The currently processed data shall be
processed again. An error shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Corrupting stp state and processing data.

62 /

Unittest for stringtools

Sending b':<te' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

Setting state of stp to 255.

Sending b':<te' to stp.

STP: unknown state (255) => adding value (3a) back to data again and changing state ->
— STP_STATE_IDLE

STP: Chunking "(2): 74 65" from buffer

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

Return value list if processing start of a frame after state had been corrupted is correct (Content [[]] and
Type is <class 'list'>).

Result (Return value list if processing start of a frame after state had been corrupted): [[
-~ 1 1 (<class 'list'>)

Expectation (Return value list if processing start of a frame after state had been
— corrupted): result = [[]] (<class 'list'>)

State after processing start of a frame after state had been corrupted is correct (Content 3 and Type is
<class 'int">).

Result (State after processing start of a frame after state had been corrupted): 3 (<class
— 'int‘>)

Expectation (State after processing start of a frame after state had been corrupted): result
— = 3 (<class 'int'>)

Buffer size after corrupting stp state is correct (Content 2 and Type is <class 'int’>).

Result (Buffer size after corrupting stp state): 2 (<class 'int'>)

Expectation (Buffer size after corrupting stp state): result = 2 (<class 'int'>)

C Test-Coverage

C.1 stringtools

The line coverage for stringtools was 100.0%
The branch coverage for stringtools was 97.7%

63/ [72]

43

44

45

46

47

48

Unittest for stringtools

C.1.1 stringtools.__init__.py

The line coverage for stringtools.__init__.py was 100.0%
The branch coverage for stringtools.__init__.py was 97.7%
#!/usr/bin/env python

—*— coding: utf—8 —x—

#

nman

stringtools (Stringtools)

x Author:x
x Dirk Alders <sudo—dirk@mount—mockery.de>
**x Description :xx%
This Module supports functionality around string operations.
** Submodules :%x
:mod: " stringtools.csp’
:mod: " stringtools .stp’

:func: gzip-compress
:func:® gzip_extract’

L L A

:func:® hexlify ®
sk Unittest 1%x*

See also the :download: unittest <stringtools/_testresults_/unittest.pdf>" documentation.

; x* Module Documentation:x*

o

from stringtools import stp
from stringtools import csp
__DEPENDENCIES__ = []

import fractions
import gzip
import logging
import time
import sys
if sys.version_info < (3, 0):
from cStringlO import StringlO

logger_name = 'STRINGTOOLS'

logger = logging.getLogger(logger_-name)
__DESCRIPTION__ = """ The Module {\\tt %s} is designed to support functionality for strings (e.g.
transfer strings via a bytestream, compressing, extracting, ...).

IRIRD

For more Information read the sphinx documentation.
""" The Module Description”""
__INTERPRETER_. = (2, 3)

""" The Tested Interpreter —Versions

% __name__.replace("_", "_T7)

IRIRD

_—all__ = ['gzip-compress',

64/

Thexlify ',
56 'esp ',

57 'stp I]

59

0o def physical_value_repr(value, unit="'"):

61 prefix = {

62 —4: 'p',

63 —3: 'n',

64 —2: ! b

65 —-1: 'm',

66 0: '",

67 1 k',

68 2: 'M',

69 3: 'G',

70 4: 'T',

71 5: 'P",

72 }

73 u=2~0

7 while u > —4 and u < 5 and (value >= 1000. or value < 1.):
75 if value >= 1:

76 u+4=1

7 value /= 1000.

78 else:

79 u——=1

80 value %= 1000.

81 if u=—0:

82 ext = "'

83 else:

84 ext = prefix[u]

85 #

86 if value < 100.

87 value = '%.2f"' % (value)

88 else:

89 value = '"%.1f' % (value)

9% while value.find('.') > —1 and (value.endswith('0') or value.endswith('."')):
01 value = value[: —1]

92 return value + ext + unit

93

94

os def time_repr(seconds):

9% days = seconds / (24 % 60 x 60)

97 seconds = seconds % (24 * 60 x 60)

98 if seconds >= 60 x 60:

99 rv = time.strftime ('%H:%M:%S"', time.gmtime(seconds))
100 else:

101 rv. = time.strftime ('Y%M%S"', time.gmtime(seconds))
102 if days >= 1:

103 rv. = '%dD %s' % (days, rv)

104 if rv.endswith(' 00:00"'):

105 rv. = rv[:—6]

106 return rv

107

108

w9 def frac_repr(value):

110 f = fractions.Fraction(value).limit_.denominator ()
111 return '%s/%s' % (f.numerator, f.denominator)

112

113

114 def gzip_compress(s, compresslevel=9):

Unittest for stringtools

'gzip_extract',

65/ [72]

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

def

Unittest for stringtools

[IRTRT)

Method to compress a stream of bytes.

:param str s: The bytestream (string) to be compressed

:param int compresslevel: An optional compressionn level (default is 9)
:return: The compressed bytestream
irtype: str

xx Example 1% %

literalinclude :: ../ examples/gzip_compress.py

Will result to the following output:
literalinclude :: ../ examples/gzip_.compress.log

rv = None

t = time.time()

if sys.version_info >= (3, 0):

rv = gzip.compress(s, compresslevel)
else:
buf = StringlO ()
f = gzip.GzipFile(mode='wb', compresslevel=compresslevel , fileobj=buf)
try:
f.write(s)
finally:
f.close ()
rv = buf.getvalue ()
buf.close ()
if rv is not None:
logger.debug('GZIP: Finished to compress a string (compression_rate=%.3f,
=%.1fs)."', len(rv) / float(len(s)), time.time() — t)
return rv

gzip_extract(s):

"o

Method to extract data from a compress stream of bytes.

param str s:
The
str

The compressed bytestream (string) to be extracted

ireturn: extracted data

rtype:
*x Example :x %

literalinclude :: ../ examples/gzip_extract.py

Will result to the following output:
literalinclude :: ../ examples/gzip_extract.log

t = time.time()

rv. = None

if sys.version_info >= (3, 0):

rv = gzip.decompress(s)
else:
inbuffer = StringlO (s)
f = gzip.GzipFile(mode='rb', fileobj=inbuffer)
try:
rv = f.read ()
finally :

consumed_time

66 / [72]

Unittest for stringtools

175 f.close ()

176 inbuffer.close ()

177 if rv is not None:

178 logger.debug('GZIP: Finished to extract a string (compression_rate=%.3f,
=%.1fs). "', len(s) / float(len(rv)), time.time() — t)

179 return rv

180

181

w2 def hexlify(s):

183 """ Method to hexlify a string.

184

185 :param str s: A string including the bytes to be hexlified.
186 :returns: The hexlified string

187 crtype: str

188

189 xx Example %%

190

191 .. literalinclude :: ../examples/hexlify.py
192

103 Will result to the following output:

194

195 .. literalinclude:: ../examples/hexlify.log
196 e

197 rv. = '"(%d):"' % len(s)

198 for byte in s:

199 if sys.version_info >= (3, 0):

200 rv 4= ' %02x' % byte

201 else:

202 rv += ' %02x"' % ord(byte)

203 return rv

200 def linefeed_filter (s):

207 """ Method to change linefeed and carriage return to '\\\\n' and "\\\\r'
208

209 :param str s: A string including carriage return and/ or linefeed.

210 creturns: A string with converted carriage return and/ or linefeed.

211 crtype: str

212 e

213 if sys.version_info >= (3, 0):

214 return s.replace(b'\r', b'\\r').replace(b'\n', b'"\\n")

215 else:

216 return s.replace('\r', '"\\r').replace('"\n', "\\n')

C.1.2 stringtools.csp.py

The line coverage for stringtools.csp.py was 100.0%
The branch coverage for stringtools.csp.py was 97.7%
1 #!/usr/bin/env python
> # —x— coding: utf—8 —x—
3 #

5 csp (Carriage—Return seperation protocol)

6

7

s k% Author:xx

9

10 * Dirk Alders <sudo—dirk@mount—mockery.de>

11

consumed_time

67/ [72]

36

37

38

39

40

41

43

44

45

46

47

48

49

50

66

68

69

71

*x Description :%%

Unittest for stringtools

This module is a submodule of :mod: stringtools "

messages via an

** Submodules:x*

x :class: stringtools

serial interface.

.csp.csp’

x :func: stringtools.csp.build_frame"

nmn

import stringtools

import logging
import sys

logger_name = 'STRINGTOOLS'
logger = logging.getLogger(logger_-name)

DATA_SEPERATOR = b'\n

class csp(object):

""" This class extracts messages from an

*x Example :*x*

literalinclude ::

../ examples/csp.csp.py

Will result to the following output:

literalinclude ::

../ examples/csp.csp.log

LOG_PREFIX = 'CSP:'

def __init__(self

def process(self,

This processes a byte out of a

:param bytes
creturns: A |
irtype: list

) ,
csp—stream .

, seperator=DATA_SEPERATOR):
self.__buffer__ =b'"'
self. __seperator__ = seperator

data):

data: A byte stream

"stp—stream” .

ist of the extracted message(s)

if sys.version_info < (3, 0):

if type(data) is unicode:

raise TypeError
#
rv = (self.__buffer__ + data).
self.__buffer_._ = rv.pop()
if len(self.__buffer__) != 0:

logger .debug('%s

Leaving data in buffer (

LOG_PREFIX, stringtools.hexlify(self.__buffer__))

for msg in rv:

logger.info('%s message identified

return rv

def build_frame (msg,

seperator=DATA_SEPERATOR) :

— %s ',

and creates an frame to transmit and receive

split(self.__seperator__)

to be processed next time):

self .LOG_PREFIX,

stringtools.

%s ', self.

hexlify (msg))

68/ [72]

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

1

2

Unittest for stringtools

""" This Method builds an "csp—frame” to be transfered via a stream.
:param str data: A String (Bytes) to be framed
creturns: The "csp—framed” message to be sent

crtype: str

*x Example :*x*

literalinclude :: ../ examples/csp.build_frame.py
Will result to the following output:
literalinclude :: ../ examples/csp.build_frame.log

if seperator in msg:
raise ValueError
else:
return msg + seperator

C.1.3 stringtools.stp.py

The line coverage for stringtools.stp.py was 100.0%
The branch coverage for stringtools.stp.py was 97.7%
#!/usr/bin/env python

—*— coding: utf—8 —%—

#

nman

stp (Serial transfer protocol)

% Author %%
* Dirk Alders <sudo—dirk@mount—mockery.de>
*x Description :*x%

This module is a submodule of :mod: stringtools ™ and creates an serial

receive messages via an serial interface.

** Submodules:xx*

* :class: stringtools.stp.stp’

x :func: stringtools.stp.build_frame"

TRIRD

import stringtools

import logging
import sys

logger_.name = 'STRINGTOOLS'
logger = logging .getlLogger(logger_name)

DATASYNC = b'\x3a'
""" The data sync byte
DATA_CLEAR.BUFFER = b'\x3c'

"""The clear buffer byte ('\\\\x3a\\\\x3c' —> start of message)”"”
DATA_VALID_MSG = b'\x3e'

"""The valid message byte ('\\\\x3a\\\\x3e' —> end of message)""”

frame to transmit and

69/ [72]

36

37

38

39

40

41

42

43

44

45

46

47

48

49

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

m

78

79

80

81

83

84

85

86

87

88

89

90

91

92

93

94

U

DATA_STORE_SYNC_VALUE = b'\x3d'

""" The store sync value byte ('\\\\x3a\
STP_STATE_IDLE = 0x00

""" ldle state definition
STP_STATE_ESCAPE_1 = 0x01
""" Escape 1 state definition
STP_STATE_ESCAPE_2 = 0x02
""" Escape 2 state definition
STP_.STATE_STORE_DATA = 0x03
""" Store data

(default)”"”

("\\\\x3a\
("\\\\x3a"

state definition

class stp(object):

""" This class extracts

x Example : %

literalinclude :: ../ examples/stp

Will result to the following output
literalinclude :: ../ examples/stp
LOG_PREFIX = 'STP:'

def __init__(self):
self.state = STP_.STATE.IDLE
self.__buffer._ =b'""'
self.__clear_buffer__()

def __clear_buffer__(self):
if len(self.__buffer__) > 0:
logger.warning('%s Chunking
self.__buffer__))
self. __buffer__

bll

def process(self, data):

[TRIET)

This processes a byte out of a
:param bytes data:
returns:

crtype:

[TRTEN)

The extracted message
str
if type(data) is list:
raise TypeError
if sys.version_info <= (3,
if type(data)
raise TypeError

0):
is unicode:

#

Vo=]

#

while len(data) > O0:
if sys.version_info >= (3,

b = bytes([data[0]])

else:

b = data[0]
data = data[1l:]
#

(start of message found;

messages from an

nittest for stringtools

\\\x3d' —> "\\\\x3a' inside a o

message)

\\\x3c' found)”"”

found inside a message)

data will be stored)”””

, ,

"stp—stream”.

.stp.py

.stp.log

"%s" from buffer', self.LOG_PREFIX, stringtools. hexlify(

"stp—stream”.

A byte stream

or None, if no message is identified yet

0):

70/ 7]

Unittest for stringtools

95 if self.state =— STP_STATE.IDLE:

%6 if b = DATASYNC:

97 self.state = STP.STATE_ESCAPE_1

98 logger.debug('%s data sync (%02x) received => changing state STP_STATE_IDLE
—> STP_STATE_ESCAPE_1', self.LOG_PREFIX, ord(b))

99 else:

100 logger.warning('%s no data sync (%02x) received => ignoring byte', self.
LOG_PREFIX, ord (b))

101 elif self.state = STP_.STATE_ESCAPE_1:

102 if b =— DATA_CLEAR_BUFFER:

103 logger.debug('%s start pattern (%02x %02x) received => changing state
STP_STATE_ESCAPE_1 —> STP_STATE.STORE.DATA', self.LOG_PREFIX, ord(DATASYNC), ord(b))

104 self.state = STP.STATE_.STORE_DATA

105 self.__clear_buffer__()

106 elif b != DATASYNC:

107 self .state = STP.STATEL.IDLE

108 logger.warning('%s no start pattern (%02x %02x) received => changing state

STP_STATE_ESCAPE.1 —> STP_STATE_IDLE', self.LOG_PREFIX, ord(DATASYNC), ord(b))
109 else:

110 logger.warning('%s 2nd data sync (%02x) received => keep state', self.
LOG_PREFIX, ord (b))

111 elif self.state =— STP_STATE.STORE_DATA:

112 if b = DATASYNC:

113 self.state = STP_.STATE_ESCAPE_2

114 logger.debug('%s data sync (%02x) received => changing state
STP_STATE_.STORE.DATA —> STP_STATE_ESCAPE_2', self.LOG_PREFIX, ord(b))

115 else:

116 self. __buffer__ 4= b

17 elif self.state = STP_STATE_ESCAPE_2:

118 if b = DATA_CLEAR_BUFFER:

119 logger.warning('%s start pattern (%02x %02x) received => changing state
STP_STATE_ESCAPE.2 —> STP_.STATE.STORE_DATA', self.LOG_PREFIX, ord(DATASYNC), ord(b))

120 self.state = STP.STATE.STORE_DATA

121 self.__clear_buffer__()

122 elif b = DATA_VALID_MSG:

123 self.state = STP_.STATE_IDLE

124 logger.debug('%s end pattern (%02x %02x) received => storing message and
changing state STP.STATE_.ESCAPE_2 —> STP_STATE_IDLE', self.LOG_PREFIX, ord(DATASYNC), ord(b)
)

125 rv.append(self.__buffer__)

126 self. __buffer_._ =b''

127 elif b = DATA_STORE_SYNC_VALUE:

128 self.state = STP.STATE_.STORE_DATA

129 logger.debug('%s store sync pattern (%02x %02x) received => changing state
STP_STATE_ESCAPE.2 —> STP.STATE.STORE_.DATA', self.LOG_PREFIX, ord(DATASYNC), ord(b))

130 self. __buffer__ += DATASYNC

131 elif b = DATASYNC:

132 self.state = STP.STATE_ESCAPE_1

133 logger.warning('%s second data sync (%02x) received => changing state
STP_STATE.ESCAPE2 —> STP_STATE.ESCAPE.1', self.LOG.PREFIX, ord(b))

134 self.__clear_buffer__()

135 else:

136 self.state = STP_.STATE.IDLE

137 logger.warning('%s data (%02x) received => changing state STP_.STATE_ESCAPE_2
—> STP_STATE_IDLE', self.LOG_PREFIX, ord(b))

138 self.__clear_buffer__()

139 else:

140 logger.error('%s unknown state (%s) => adding value (%02x) back to data again and

changing state —> STP_.STATE_IDLE', self.LOG_PREFIX, repr(self.state), ord(b))
141 self.state = STP_.STATE_IDLE
142 self.__clear_buffer__()

71/

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

Unittest for stringtools

data = b + data
for msg in rv:
logger.info('%s message identified — %s', self.LOG_PREFIX, stringtools
return rv

def build_frame(data):
""" This Method builds an "stp—frame” to be transfered via a stream.
:param str data: A String (Bytes) to be framed
:returns: The "stp—framed” message to be sent

crtype: str

*x Example :**

literalinclude :: ../ examples/stp.build_frame.py
Will result to the following output:
literalinclude :: ../ examples/stp.build_frame.log

rv. = DATASYNC + DATA_CLEAR_BUFFER

for byte in data:
if sys.version_info >= (3, 0):
byte = bytes ([byte])
if byte = DATASYNC:
rv += DATASYNC + DATA_STORE_SYNC_VALUE
else:
rv += byte

rv += DATASYNC + DATA_VALID_-MSG
return rv

.hexlify (msg))

72/

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 2.7.17 (final)
	Test-Statistic for testrun with python 3.6.9 (final)
	Coverage Statistic

	Tested Requirements
	Stream Definition
	Physical representation
	Time representation
	Fraction representation

	Human readable value representations
	Stream to Human readable String
	Hexadecimal Values
	Number of Bytes
	CRLF-Filter

	Stream Compression
	Compress
	Extract

	Carriagereturn Seperation Protocol (CSP)
	Frame creation
	Frame creation error
	Frame processing
	Frame processing - Input data type error

	Serial Transfer Protocol (STP)
	Frame creation
	Frame creation - Start pattern and end pattern inside a message
	Frame processing
	Frame processing - Input data type error
	Frame processing - Start pattern and end pattern inside a message
	Frame processing - Data before the start pattern
	Frame processing - Incorrect start patterns
	Frame processing - Incorrect end pattern
	Frame processing - After state corruption

	Trace for testrun with python 2.7.17 (final)
	Tests with status Info (21)
	Physical representation
	Time representation
	Fraction representation
	Hexadecimal Values
	Number of Bytes
	CRLF-Filter
	Compress
	Extract
	Frame creation
	Frame creation error
	Frame processing
	Frame processing - Input data type error
	Frame creation
	Frame creation - Start pattern and end pattern inside a message
	Frame processing
	Frame processing - Input data type error
	Frame processing - Start pattern and end pattern inside a message
	Frame processing - Data before the start pattern
	Frame processing - Incorrect start patterns
	Frame processing - Incorrect end pattern
	Frame processing - After state corruption

	Trace for testrun with python 3.6.9 (final)
	Tests with status Info (21)
	Physical representation
	Time representation
	Fraction representation
	Hexadecimal Values
	Number of Bytes
	CRLF-Filter
	Compress
	Extract
	Frame creation
	Frame creation error
	Frame processing
	Frame processing - Input data type error
	Frame creation
	Frame creation - Start pattern and end pattern inside a message
	Frame processing
	Frame processing - Input data type error
	Frame processing - Start pattern and end pattern inside a message
	Frame processing - Data before the start pattern
	Frame processing - Incorrect start patterns
	Frame processing - Incorrect end pattern
	Frame processing - After state corruption

	Test-Coverage
	 stringtools
	 stringtools.__init__.py
	 stringtools.csp.py
	 stringtools.stp.py

