Unittest for stringtools

December 21, 2020

Unittest for stringtools

Contents
(1 Test Information| 4
L1 Test Candidate Informationl 4
1.2 Unittest Informationl 4
1.3 Test System Information| 4
[2—Statistid 4
2.1 Test-Statistic for testrun with python 2.7.18 (final)l 4
.2 Test-Statistic for testrun with python 3.8.5 (final)] 5
2.3 Coverage Statistic] 5
[3 Tested Requirements| 6
3.1 Stream Definition] 6
[3.1.1 Physical representation| 6
3.1.2 Time representation| L e 7
[3.1.3 Fraction representation| L 8
3.2 Human readable value representations| L 9
3.3 Stream to Human readable String| 9
3.3.1 Hexadecimal Values| 9
13.3.2 Number of Bytes| 10
B33 _CRIEFEED oo 10
3.4 Stream Compression|. e 11
3.4.1 Compress| e 11
BAZ Exfracl. o oo 13
[3.5 Carriagereturn Seperation Protocol (CSP)[. 14
B5I1 Frame creationl 14
B52 Frame creationerrod. 16
3.5.3 Frame processing| e 17
13.5.4 Frame processing - Input data type error| 18
[3.6 Serial Transfer Protocol (STP)| 19
B6I Framecreationl 19

Unittest for stringtools

13.6.2 Frame creation - Start pattern and end pattern inside a message| 20
13.6.3 Frame processing| L 21
13.6.4 Frame processing - Input data type error|o 22
13.6.5 Frame processing - Start pattern and end pattern inside a message|. 23
13.6.6 Frame processing - Data before the start pattern| 23
13.6.7 Frame processing - Incorrect start patterns|. 24
13.6.8 Frame processing - Incorrect end pattern|. L 25
13.6.9 Frame processing - After state corruption| 26
[A" Trace for testrun with python 2.7.18 (final)| 28
A1 Tests with status Info (21)[. e 28
IA.1.1 Physical representation| L 28
JA.1.2 Time representation| e 29
IA.1.3 Fraction representation| 30
IA.l4 Hexadecimal Values| 31
IA.LL5 Number of Bytes| e 32
AI6 CRLE-FREN oot 32
JALL7 Compress| e 32
AIB8 Extracl. oo 33
[A19 Framecreationl 34
IA.1.10 Frame creation errorl. L 34
JA.L.I1 Frame processing| e e 35
IA.1.12 Frame processing - Input data type error|. 36
[A113 Frame creationl 37
|A.1.14 Frame creation - Start pattern and end pattern inside a message| 37
JA.L15 Frame proCcessingl o e e e e 38
IA.1.16 Frame processing - Input data type error| 39
|A.1.17 Frame processing - Start pattern and end pattern inside a message|. 40
IA.1.18 Frame processing - Data before the start pattern| 40
IA.1.19 Frame processing - Incorrect start patterns|. L 41
|A.1.20 Frame processing - Incorrect end pattern|. Lo 42
IA.1.21 Frame processing - After state corruption| 44

Unittest for stringtools

[B Trace for testrun with python 3.8.5 (final)| 45
[B.1 Tests with status Info (21)] 45
IB.1.1 Physical representation| 45
IB.1.2 Time representation| e 47
IB.1.3 Fraction representation| 48
IB.1.4 Hexadecimal Values| 49
IB.1.5- Number of Bytes| 50
BIG CRIFFIREN . . . o o o o oo 50
IB.1.7 Compress| e 51
BIB Extractl. oo 51
[B.1.9 Frame creationl 52
IB.1.10 Frame creation errorl. e 52
IB.1.11 Frame processing| e 53
IB.1.12 Frame processing - Input data type error| 54
B.1.13 Frame creationl 55
IB.1.14 Frame creation - Start pattern and end pattern inside a message| 55
IB.1.15 Frame processing| e e e 56
IB.1.16 Frame processing - Input data type error| L 57
IB.1.17 Frame processing - Start pattern and end pattern inside a message|. 58
IB.1.18 Frame processing - Data before the start pattern| 58
IB.1.19 Frame processing - Incorrect start patterns|. 59
IB.1.20 Frame processing - Incorrect end pattern|. L 60
IB.1.21 Frame processing - After state corruption| 62

[C Test-Coverage 63
IC.1 stringtools | 63
IC.1.1 stringtools.__init__.py |. 64
[C.1.2 stringtoolS.CSP.PY | - - « « « o v e 67
[C.1.3 stringtools.Stp.PY | o . 69

3/

Unittest for stringtools

1 Test Information

1.1 Test Candidate Information

The Module stringtools is designed to support functionality for strings (e.g. transfer strings via a bytestream,

compressing, extracting, ...). For more Information read the sphinx documentation.

Library Information

Name stringtools

State Released

Supported Interpreters python2, python3

Version 3eac28a80770a728e1f521fadb92868d

Dependencies

1.2 Unittest Information

Unittest Information

Version €82636461580a46d22b3bb33660ea78a
Testruns with python 2.7.18 (final), python 3.8.5 (final)

1.3 Test System Information

System Information

Architecture 64bit

Distribution Linux Mint 20 ulyana

Hostname ahorn

Kernel 5.4.0-58-generic (#64-Ubuntu SMP Wed Dec 9 08:16:25 UTC 2020)
Machine x86_64

Path /user_data/data/dirk/prj/unittest/stringtools/unittest

System Linux

Username dirk

2 Statistic

2.1
Number of tests 21
Number of successfull tests 21

Number of possibly failed tests 0

Number of failed tests 0
Executionlevel Full Test (all defined tests)
Time consumption 0.021s

4/

2.2

Unittest for stringtools

Number of tests

Number of successfull tests
Number of possibly failed tests
Number of failed tests

21
21
0
0

Executionlevel

Time consumption

Full Test (all defined tests)
0.018s

2.3 Coverage Statistic

Module- or Filename

Line-Coverage Branch-Coverage

stringtools
stringtools.__init__.py
stringtools.csp.py
stringtools.stp.py

100.0% 97.7%
100.0%
100.0%
100.0%

5/(72)

Unittest for stringtools

3 Tested Requirements

3.1 Stream Definition

A Stream is from class bytes for python3 and from type str for python2.

3.1.1 Physical representation

Description

The library stringtools shall have a method physical_repr, transforming a float or integer value to a string with a

1 to 3 digit value followed by the physical prefix for the unit.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.1]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 2.7.18 (final)
/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (24)
2020-12-21 01:00:04,273

2020-12-21 01:00:04,276

0.003s

Testsummary:

Physical representation for 1.17e-10 is correct (Content '117p’ and Type is <type 'str'>).
Physical representation for 5.4e-08 is correct (Content '54n’ and Type is <type 'str'>).
Physical representation for 2.53e-05 is correct (Content '25.3u’ and Type is <type 'str'>).
Physical representation for 0.1 is correct (Content '100m’ and Type is <type 'str'>).

Physical representation for 0 is correct (Content '0" and Type is <type 'str'>).

Physical representation for 1 is correct (Content '1" and Type is <type 'str'>).

Physical representation for 1000 is correct (Content '1k’ and Type is <type 'str'>).

Physical representation for 1005001 is correct (Content '1.01M" and Type is <type 'str'>).
Physical representation for 1004000000 is correct (Content '1G’ and Type is <type 'str'>).
Physical representation for 1003000000000 is correct (Content '1T" and Type is <type 'str'>).
Physical representation for 10000000000000000 is correct (Content '10P" and Type is <type
'str’>).

Physical representation for 17.17 is correct (Content '17.17" and Type is <type 'str'>).
Physical representation for 117000 is correct (Content '117k" and Type is <type 'str'>).
Physical representation for 117.17 is correct (Content '117.2" and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.1]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.8.5 (final)
/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (24)
2020-12-21 01:00:04,671

2020-12-21 01:00:04,673

0.002s

6/[72)

Testsummary:

Unittest for stringtools

Physical representation for 1.17e-10 is correct (Content '117p’ and Type is <class 'str'>).
Physical representation for 5.4e-08 is correct (Content '54n’ and Type is <class 'str'>).
Physical representation for 2.53e-05 is correct (Content '25.3u’ and Type is <class 'str'>).
Physical representation for 0.1 is correct (Content '100m’ and Type is <class 'str'>).

Physical representation for 0 is correct (Content '0" and Type is <class 'str'>).

Physical representation for 1 is correct (Content '1" and Type is <class 'str'>).

Physical representation for 1000 is correct (Content '1k’ and Type is <class 'str'>).

Physical representation for 1005001 is correct (Content '1.01M’ and Type is <class 'str'>).
Physical representation for 1004000000 is correct (Content '1G’ and Type is <class 'str'>).
Physical representation for 1003000000000 is correct (Content '1T" and Type is <class 'str’>).
Physical representation for 10000000000000000 is correct (Content '10P" and Type is <class
'str'>).

Physical representation for 17.17 is correct (Content '17.17" and Type is <class 'str'>).
Physical representation for 117000 is correct (Content '117k’ and Type is <class 'str'>).
Physical representation for 117.17 is correct (Content '117.2" and Type is <class 'str'>).

3.1.2 Time representation

Description
The library stringtools shall have a method physical repr, transforming an integer value to a time string like
HH:MM:SS.
Testresult
This test was passed with the state: . See also full trace in section [A.1.2]
Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (25)
Start-Time: 2020-12-21 01:00:04,276
Finished-Time: 2020-12-21 01:00:04,277
Time-Consumption 0.001s
Testsummary:
Time representation for 59 is correct (Content '00:59" and Type is <type 'str'>).
Time representation for 60 is correct (Content '01:00" and Type is <type 'str'>).
Time representation for 3599 is correct (Content '59:59" and Type is <type 'str'>).
Time representation for 3600 is correct (Content '01:00:00" and Type is <type 'str'>).
Time representation for 86399 is correct (Content '23:59:59' and Type is <type 'str'>).
Time representation for 86400 is correct (Content '1D’" and Type is <type 'str’>).
Time representation for 86459 is correct (Content '1D 00:59" and Type is <type 'str'>).
Time representation for 90000 is correct (Content '1D 01:00:00" and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.2]
Testrun: python 3.8.5 (final)

7/

Caller:

Start-Time:
Finished-Time:
Time-Consumption

Unittest for stringtools

/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (25)
2020-12-21 01:00:04,673

2020-12-21 01:00:04,675

0.001s

Testsummary:

Time representation for 59 is correct (Content '00:59" and Type is <class 'str'>).

Time representation for 60 is correct (Content '01:00" and Type is <class 'str'>).

Time representation for 3599 is correct (Content '59:59" and Type is <class 'str'>).

Time representation for 3600 is correct (Content '01:00:00" and Type is <class 'str'>).
Time representation for 86399 is correct (Content '23:59:59" and Type is <class 'str'>).
Time representation for 86400 is correct (Content '1D’" and Type is <class 'str'>).

Time representation for 86459 is correct (Content '1D 00:59" and Type is <class 'str'>).
Time representation for 90000 is correct (Content '1D 01:00:00" and Type is <class 'str'>).

3.1.3 Fraction representation

Description

The library stringtools shall have a method frac_repr, transforming a float or integer value to a fraction string with

a limited denominator.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.3]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (26)

Start-Time: 2020-12-21 01:00:04,277

Finished-Time: 2020-12-21 01:00:04,278

Time-Consumption 0.001s

Testsummary:
Fraction representation for 17.4 is correct (Content '87/5" and Type is <type 'str'>).
Fraction representation for 0.25 is correct (Content '1/4" and Type is <type 'str'>).
Fraction representation for 0.1 is correct (Content '1/10" and Type is <type 'str'>).
Fraction representation for 0.01666667 is correct (Content '1/60" and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.3]

Testrun:
Caller:
Start-Time:
Finished-Time:

Time-Consumption

python 3.8.5 (final)

/user_data/data/dirk/prj/unittest/stringtools/unittest /src/tests/__init__.py (26)
2020-12-21 01:00:04,675

2020-12-21 01:00:04,675

0.001s

Testsummary:

Fraction representation for 17.4 is correct (Content '87/5" and Type is <class 'str'>).

8/[72)

Unittest for stringtools

Fraction representation for 0.25 is correct (Content '1/4" and Type is <class 'str'>).
Fraction representation for 0.1 is correct (Content '1/10" and Type is <class 'str'>).
Fraction representation for 0.01666667 is correct (Content '1/60" and Type is <class 'str'>).

3.2 Human readable value representations

3.3

Stream to Human readable String

3.3.1 Hexadecimal Values

Description

A Stream shall be converted to a human readable String containing all bytes as hexadecimal values seperated by a Space.

Reason for the implementation

Make non printable characters printable.

Fitcriterion

A stream shall be converted at least once and the hex values shall exist in the returnvalue in the correct order.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.4]

Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (29)
Start-Time: 2020-12-21 01:00:04,278
Finished-Time: 2020-12-21 01:00:04,279
Time-Consumption 0.000s
Testsummary:
Info Checking test pattern de ad be ef (<type 'str'>).
Pattern included all relevant information in the correct order.
Testresult

This test was passed with the state:

. See also full trace in section [B.1.4]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (29)
Start-Time: 2020-12-21 01:00:04,675

Finished-Time: 2020-12-21 01:00:04,676

Time-Consumption 0.000s

Testsummary:

Info Checking test pattern de ad be ef (<class 'bytes'>).

Pattern included all relevant information in the correct order.

9/172

Unittest for stringtools

3.3.2 Number of Bytes

Description

The Length of a Stream surrounded by brakets shall be included in the human readable string.

Reason for the implementation

Show the length of a Stream without counting the seperated values.

Fitcriterion

The described pattern including the decimal number of bytes is included in the string for at least one Stream.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.5]

Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (30)
Start-Time: 2020-12-21 01:00:04,279
Finished-Time: 2020-12-21 01:00:04,279
Time-Consumption 0.000s
Testsummary:
Info Checking test pattern with length 4.
'(4)" is in '(4): de ad be ef’ at position 0
Testresult

This test was passed with the state:

. See also full trace in section [B.1.5]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (30)
Start-Time: 2020-12-21 01:00:04,676

Finished-Time: 2020-12-21 01:00:04,676

Time-Consumption 0.000s

Testsummary:

Info Checking test pattern with length 4.

'(4)" is in '(4): de ad be ef’ at position 0

3.3.3 CRLF-Filter

Description

The module stringtools shall have a method to replace carriage return and line feed to their escaped representation.

Reason for the implementation

Replace these characters to make output printable (e.g. for logging a string based protocol).

10/[7]

Fitcriterion

Unittest for stringtools

Filter at least one string and check at least one CR and one LF representation.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.6]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (31)

Start-Time: 2020-12-21 01:00:04,279

Finished-Time: 2020-12-21 01:00:04,279

Time-Consumption 0.000s

Testsummary:

Info Checking test pattern with length 4.
Returnvalue of linefeed filter is correct (Content 'test//r//n123//r//n" and Type is <type
'str’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.6]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (31)
Start-Time: 2020-12-21 01:00:04,676

Finished-Time: 2020-12-21 01:00:04,676

Time-Consumption 0.000s

Testsummary:

Info Checking test pattern with length 4.

Returnvalue of linefeed filter is correct (Content b'test//r//n123//r//n" and Type is <class

'bytes’>).

3.4 Stream Compression

3.4.1 Compress

Description

The module stringtools shall have a method compressing a Stream with gzip.

Reason for the implementation

Speed up transfer with low transfer rate.

Fitcriterion

Compressed Stream is extractable and results in the original data.

11/

Unittest for stringtools

Testresult
This test was passed with the state: Success. See also full trace in section [A.1.7]

12/[19

Unittest for stringtools

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (34)

Start-Time: 2020-12-21 01:00:04,279

Finished-Time: 2020-12-21 01:00:04,280

Time-Consumption 0.001s

Testsummary:

Info Compressing Streams result in differnt streams with the same input stream. Therefore the test
will compare the decompressed data.

Info Compressing stream: (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff fF ff ff ff ff ff ff ff
ff ff ff fF fF fF

Info Extracting stream: (26): 1f 8b 08 00 84 eb df 5f 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1le
00 00 00
Extracted data is correct (Content (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff
ff ff ff ff £f £f £F fF fF ff ff ff and Type is <type 'str’>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.7]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.8.5 (final)
/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (34)
2020-12-21 01:00:04,676

2020-12-21 01:00:04,677

0.001s

Testsummary:

Info

Info

Info

Compressing Streams result in differnt streams with the same input stream. Therefore the test

will compare the decompressed data.
Compressing stream: (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff fF ff ff ff ff ff ff ff

ff ff ff f f f
Extracting stream: (26): 1f 8b 08 00 84 e5 df 5f 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de le

00 00 00
Extracted data is correct (Content (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff

ff ff ff ff ff ff ff ff ff ff ff ff and Type is <class 'bytes'>).

3.4.2 Extract

Description

The module stringtools shall have a method extracting a Stream with gzip.

Reason for the implementation

Speed up transfer with low transfer rate.

Fitcriterion

Extracted Stream is equal to the original compressed data.

13/[7]

Testresult

This test was passed with the state:

Unittest for stringtools

. See also full trace in section [A.1.8]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (35)

Start-Time: 2020-12-21 01:00:04,280

Finished-Time: 2020-12-21 01:00:04,281

Time-Consumption 0.000s

Testsummary:

Info Extracting stream: (26): 1f 8b 08 00 34 e0 04 5d 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e
00 00 00
Extracted data is correct (Content '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff
ff ff £f ff ff £f ff ff £f fF ff ff ff* and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.8]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.8.5 (final)
/user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (35)
2020-12-21 01:00:04,677

2020-12-21 01:00:04,678

0.001s

Testsummary:

Info

Extracting stream: (26): 1f 8b 08 00 34 e0 04 5d 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e

00 00 00
Extracted data is correct (Content '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff

ff ff ff ff ff £f ff f £f ff ff £ff ff' and Type is <class 'str'>).

3.5 Carriagereturn Seperation Protocol (CSP)

The Carriagereturn Seperation Protocol shall use carriage return as the end pattern for message seperation.

3.5.1 Frame creation

Description

The CSP module shall support a method to create a Frame from a stream.

Reason for the implementation

Simple message or frame generation for streams (e.g. Keyboard (user input), RFID-Reader, ...).

Fitcriterion

Creation of a testframe and checking the result.

14/

Unittest for stringtools

Testresult
This test was passed with the state: Success. See also full trace in section [A.1.9]

15/[19

Unittest for stringtools

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (39)

Start-Time: 2020-12-21 01:00:04,281

Finished-Time: 2020-12-21 01:00:04,281

Time-Consumption 0.000s

Testsummary:

Info Creating testframe for " :testframe: for csp”

CSP-Frame is correct (Content ":testframe: for csp/n’ and Type is <type 'str'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.9]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (39)
Start-Time: 2020-12-21 01:00:04,678

Finished-Time: 2020-12-21 01:00:04,678

Time-Consumption 0.000s

Testsummary:

Info Creating testframe for 'b’:testframe: for csp”

CSP-Frame is correct (Content b':testframe: for csp/n’ and Type is <class 'bytes'>).

3.5.2 Frame creation error

Description

The Frame creation Method shall raise ValueError, if a frame separation character is in the Source-String.

Reason for the implementation

String including separation charcter will be splitted in pieces while processing after transport.

Fitcriterion

ValueErroro is raised for at least one String including the separation character.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.10]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (40)
Start-Time: 2020-12-21 01:00:04,281

Finished-Time: 2020-12-21 01:00:04,282

Time-Consumption 0.000s

Testsummary:

Info Creating testframe for " :testframe: for csp”

CSP-Frame is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

16 /[72)

Unittest for stringtools

Testresult
This test was passed with the state: . See also full trace in section [B.1.1I0]
Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (40)
Start-Time: 2020-12-21 01:00:04,679
Finished-Time: 2020-12-21 01:00:04,679
Time-Consumption 0.000s
Testsummary:
Info Creating testframe for 'b’:testframe: for csp”

CSP-Frame is correct (Content <class 'ValueError'> and Type is <class 'type'>).

3.5.3 Frame processing

Description
The CSP Module shall support a class including a method to process stream snipets of variable length. This Method

shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation

Support message analysis of a stream with every size.

Fitcriterion

At least one frame given in at least two snippets is identified correctly.

Testresult
This test was passed with the state: . See also full trace in section [A.1.11]
Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (41)
Start-Time: 2020-12-21 01:00:04,282
Finished-Time: 2020-12-21 01:00:04,282
Time-Consumption 0.001s
Testsummary:
Info Processing testframe: ":testframe: for csp/n” in two snippets
First processed CSP-Snippet is correct (Content [] and Type is <type 'list'>).
Final processed CSP-Frame is correct (Content [':testframe: for csp’] and Type is <type 'list’>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.11]
Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (41)
Start-Time: 2020-12-21 01:00:04,679
Finished-Time: 2020-12-21 01:00:04,680

17/

Unittest for stringtools

Time-Consumption 0.001s

Testsummary:

Info Processing testframe: 'b’:testframe: for csp/n” in two snippets
First processed CSP-Snippet is correct (Content [] and Type is <class 'list'>).
Final processed CSP-Frame is correct (Content [b':testframe: for csp’] and Type is <class

'list’>).

3.56.4 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation
Type restriction.

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state: . See also full trace in section [A.1.12]
Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (42)
Start-Time: 2020-12-21 01:00:04,282
Finished-Time: 2020-12-21 01:00:04,283
Time-Consumption 0.001s
Testsummary:
Info Processing wrong data (list)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type’>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Info Processing wrong data (int)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type'>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Info Processing wrong data (unicode)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type'>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.12]
Testrun: python 3.8.5 (final)

18/[77]

Unittest for stringtools

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (42)

Start-Time: 2020-12-21 01:00:04,680

Finished-Time: 2020-12-21 01:00:04,682

Time-Consumption 0.002s

Testsummary:

Info Processing wrong data (list)
Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Info Processing wrong data (int)
Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Info Processing wrong data (str)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b" and Type is <class 'bytes'>).

3.6 Serial Transfer Protocol (STP)

The Serial Transfer Protocol shall use a start pattern and an end pattern to identify a message in a stream. Both

patterns shall be a two byte values starting with the same (sync-)byte.

3.6.1 Frame creation

Description

A frame creation method shall create a frame out of given input data.

Reason for the implementation

Message or Frame generation for streams (e.g. data transfer via bluetooth, ethernet, ...).

Fitcriterion

Creation of a testframe and checking the result.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.13]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (46)
Start-Time: 2020-12-21 01:00:04,284

Finished-Time: 2020-12-21 01:00:04,284

Time-Consumption 0.000s

Testsummary:

Info Creating testframe for " testframe for stp”

STP-Frame is correct (Content ":<testframe for stp:>" and Type is <type 'str’>).

19/[7]

Unittest for stringtools

Testresult
This test was passed with the state: . See also full trace in section [B.1.13]
Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (46)
Start-Time: 2020-12-21 01:00:04,682
Finished-Time: 2020-12-21 01:00:04,682
Time-Consumption 0.001s
Testsummary:
Info Creating testframe for 'b'testframe for stp”

STP-Frame is correct (Content b":<testframe for stp:>" and Type is <class 'bytes'>).

3.6.2 Frame creation - Start pattern and end pattern inside a message

Description
The frame creation method shall support existance of the start or end pattern in the data to be framed.

Reason for the implementation
Possibility to send any kind of data (including the patterns).

Fitcriterion

Creation of a testframe out of data including at least one start pattern and one end pattern and checking the result.

Testresult
This test was passed with the state: . See also full trace in section [A.1.14]
Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (47)
Start-Time: 2020-12-21 01:00:04,284
Finished-Time: 2020-12-21 01:00:04,284
Time-Consumption 0.001s
Testsummary:
Info Creating testframe including start and end pattern for " testframe for :<stp:>"
STP-Frame is correct (Content ":<testframe for :=<stp:=:>" and Type is <type 'str'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.14]
Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (47)
Start-Time: 2020-12-21 01:00:04,683
Finished-Time: 2020-12-21 01:00:04,683

Time-Consumption 0.000s

20/ [72]

Testsummary:

Unittest for stringtools

Info

Creating testframe including start and end pattern for 'b'testframe for :<stp:>"
STP-Frame is correct (Content b":<testframe for :=<stp:=:>" and Type is <class 'bytes'>).

3.6.3 Frame processing

Description

The STP Module shall support a class including a method to process stream snipets of variable length. This Method

shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation

Support message analysis of a stream with every size.

Fitcriterion

At least one frame given in at least two snippets is identified correctly.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.15]

Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (48)
Start-Time: 2020-12-21 01:00:04,285
Finished-Time: 2020-12-21 01:00:04,287
Time-Consumption 0.002s
Testsummary:
Info Processing testframe: ":<testframe for stp:>"
First processed STP snippet is correct (Content [| and Type is <type 'list’>).
Final processed STP snippet is correct (Content ['testframe for stp’] and Type is <type 'list’>).
Testresult

This test was passed with the state:

. See also full trace in section [B.1.15]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (48)
Start-Time: 2020-12-21 01:00:04,683

Finished-Time: 2020-12-21 01:00:04,684

Time-Consumption 0.001s

Testsummary:

Info Processing testframe: 'b’:<testframe for stp:>"

First processed STP snippet is correct (Content [| and Type is <class 'list'>).
Final processed STP snippet is correct (Content [b'testframe for stp'] and Type is <class 'list’>).

21/ 72

Unittest for stringtools

3.6.4 Frame processing - Input data type error

Description

If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation

Type restriction.

Fitcriterion

At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult

This test was passed with the state:

. See also full trace in section [A.1.16]

Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (49)
Start-Time: 2020-12-21 01:00:04,287
Finished-Time: 2020-12-21 01:00:04,290
Time-Consumption 0.003s
Testsummary:
Info Processing wrong data (list)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type’>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Info Processing wrong data (int)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type’>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Info Processing wrong data (unicode)
Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type
"type’>).
Buffer still empty is correct (Content " and Type is <type 'str'>).
Testresult

This test was passed with the state:

. See also full trace in section [B.1.16]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (49)
Start-Time: 2020-12-21 01:00:04,684

Finished-Time: 2020-12-21 01:00:04,686

Time-Consumption 0.001s

Testsummary:

Info Processing wrong data (list)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class "type'>).
Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

22/ 73]

Info

Info

Unittest for stringtools

Processing wrong data (int)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Processing wrong data (str)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).
Buffer still empty is correct (Content b" and Type is <class 'bytes'>).

3.6.5 Frame processing - Start pattern and end pattern inside a message

Reason for the implementation

Possibility to send any kind of data (including the patterns).

Testresult
This test was passed with the state: . See also full trace in section [A.1.17]
Testrun: python 2.7.18 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (50)
Start-Time: 2020-12-21 01:00:04,290
Finished-Time: 2020-12-21 01:00:04,291
Time-Consumption 0.001s
Testsummary:
Info Processing testframe: ":<testframe for :=<stp:=:>"
Processed STP-Frame is correct (Content ['testframe for :<stp:>'] and Type is <type 'list’>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.17]
Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (50)
Start-Time: 2020-12-21 01:00:04,686
Finished-Time: 2020-12-21 01:00:04,687
Time-Consumption 0.001s
Testsummary:
Info Processing testframe: 'b":<testframe for :=<stp:=:>"

Processed STP-Frame is correct (Content [b'testframe for :<stp:>'] and Type is <class 'list'>).

3.6.6 Frame processing - Data before the start pattern

Description

Data before the start pattern shall be ignored. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

23 /72

Testresult

This test was passed with the state:

Unittest for stringtools

. See also full trace in section [A.1.18]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (51)

Start-Time: 2020-12-21 01:00:04,291

Finished-Time: 2020-12-21 01:00:04,292

Time-Consumption 0.001s

Testsummary:

Info Processing testframe: " _:<testframe for stp:>"

Processed STP-Frame is correct (Content ['testframe for stp'] and Type is <type 'list">).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.18]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (51)
Start-Time: 2020-12-21 01:00:04,687

Finished-Time: 2020-12-21 01:00:04,687

Time-Consumption 0.001s

Testsummary:

Info Processing testframe: 'b'_:<testframe for stp:>"

Processed STP-Frame is correct (Content [b'testframe for stp'] and Type is <class 'list'>).

3.6.7 Frame processing - Incorrect start patterns

Description

On receiving an incorrect start pattern, STP shall stay in ESCAPE_1, in case of data sync was received twice or back to

state IDLE in all other faulty start patterns starting with data sync. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.19]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (52)
Start-Time: 2020-12-21 01:00:04,292

Finished-Time: 2020-12-21 01:00:04,293

Time-Consumption 0.001s

Testsummary:

Info Processing data with an insufficient start pattern.

24/

Unittest for stringtools

Return value list if processing incorrect start of frame is correct (Content [[]] and Type is <type
list'>).
State after processing incorrect start of frame is correct (Content 0 and Type is <type 'int'>).

Info Processing data with an insufficient start pattern (two times sync).
Return value list if processing data_sync twice is correct (Content [[]] and Type is <type 'list’>).
State after processing data_sync twice is correct (Content 1 and Type is <type 'int’>).
Testresult

This test was passed with the state:

. See also full trace in section [B.1.19]

Testrun: python 3.8.5 (final)
Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (52)
Start-Time: 2020-12-21 01:00:04,688
Finished-Time: 2020-12-21 01:00:04,688
Time-Consumption 0.001s
Testsummary:
Info Processing data with an insufficient start pattern.
Return value list if processing incorrect start of frame is correct (Content [[]] and Type is <class
'list'>).
State after processing incorrect start of frame is correct (Content 0 and Type is <class 'int'>).
Info Processing data with an insufficient start pattern (two times sync).

Return value list if processing data_sync twice is correct (Content [[]] and Type is <class 'list’>).

State after processing data_sync twice is correct (Content 1 and Type is <class 'int'>).

3.6.8 Frame processing - Incorrect end pattern

Description

On receiving an incorrect end pattern, STP shall change to state STORE_DATA, in case of a start pattern, to ESCAPE_1,
in case of data sync was received twice or back to state IDLE in all other faulty end patterns starting with data sync. A

warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.20]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (53)
Start-Time: 2020-12-21 01:00:04,293

Finished-Time: 2020-12-21 01:00:04,295

Time-Consumption 0.002s

Testsummary:

Info Processing data with an insufficient end pattern.

25/ [72]

Unittest for stringtools

Return value list if processing data_sync and data again after start of frame is correct (Content
[[]] and Type is <type 'list'>).
State after processing data_sync and data again after start of frame is correct (Content 0 and
Type is <type 'int'>).
Buffer size after processing data with insufficient end pattern is correct (Content 0 and Type is
<type 'int'>).
Info Processing data with an insufficient end pattern (start pattern instead of end pattern).
Return value list if processing 2nd start of frame is correct (Content [[]] and Type is <type
list'>).
State after processing 2nd start of frame is correct (Content 3 and Type is <type 'int'>).
Buffer size after processing 2nd start of frame is correct (Content 0 and Type is <type 'int’>).
Info Processing data with an insufficient end pattern (two times sync instead of end pattern).
Return value list if processing data_sync twice after start of frame is correct (Content [[]] and
Type is <type 'list'>).
State after processing data_sync twice after start of frame is correct (Content 1 and Type is

<type 'int'>).
Testresult
This test was passed with the state: . See also full trace in section [B.1.20]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (53)

Start-Time: 2020-12-21 01:00:04,689

Finished-Time: 2020-12-21 01:00:04,691

Time-Consumption 0.002s

Testsummary:

Info Processing data with an insufficient end pattern.
Return value list if processing data_sync and data again after start of frame is correct (Content
[[]] and Type is <class 'list'>).
State after processing data_sync and data again after start of frame is correct (Content 0 and
Type is <class 'int">).
Buffer size after processing data with insufficient end pattern is correct (Content 0 and Type is
<class 'int'>).

Info Processing data with an insufficient end pattern (start pattern instead of end pattern).
Return value list if processing 2nd start of frame is correct (Content [[]] and Type is <class
list'>).
State after processing 2nd start of frame is correct (Content 3 and Type is <class 'int'>).
Buffer size after processing 2nd start of frame is correct (Content 0 and Type is <class 'int'>).

Info Processing data with an insufficient end pattern (two times sync instead of end pattern).

Return value list if processing data_sync twice after start of frame is correct (Content [[]] and
Type is <class 'list'>).

State after processing data_sync twice after start of frame is correct (Content 1 and Type is
<class 'int">).

3.6.9 Frame processing - After state corruption

Description
The state of STP shall be set to IDLE, after an unknown state was recognised. The currently processed data shall be

26/

Unittest for stringtools

processed again. An error shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult

This test was passed with the state:

. See also full trace in section [A.1.21]

Testrun: python 2.7.18 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (54)

Start-Time: 2020-12-21 01:00:04,295

Finished-Time: 2020-12-21 01:00:04,296

Time-Consumption 0.001s

Testsummary:

Info Corrupting stp state and processing data.
Return value list if processing start of a frame after state had been corrupted is correct (Content
[[]] and Type is <type 'list'>).
State after processing start of a frame after state had been corrupted is correct (Content 3 and
Type is <type 'int'>).
Buffer size after corrupting stp state is correct (Content 2 and Type is <type 'int'>).

Testresult

This test was passed with the state:

. See also full trace in section [B.1.21]

Testrun: python 3.8.5 (final)

Caller: /user_data/data/dirk/prj/unittest/stringtools/unittest/src/tests/__init__.py (54)
Start-Time: 2020-12-21 01:00:04,691

Finished-Time: 2020-12-21 01:00:04,692

Time-Consumption 0.001s

Testsummary:

Info Corrupting stp state and processing data.

Return value list if processing start of a frame after state had been corrupted is correct (Content
[[]] and Type is <class 'list’>).

State after processing start of a frame after state had been corrupted is correct (Content 3 and
Type is <class 'int'>).

Buffer size after corrupting stp state is correct (Content 2 and Type is <class 'int'>).

27/

Unittest for stringtools

A Trace for testrun with python 2.7.18 (final)

A.1 Tests with status Info (21)
A.1.1 Physical representation

Description
The library stringtools shall have a method physical_repr, transforming a float or integer value to a string with a

1 to 3 digit value followed by the physical prefix for the unit.

Testresult
This test was passed with the state:

Physical representation for 1.17e-10 is correct (Content '117p" and Type is <type 'str'>).

Result (Physical representation for 1.17e-10): '117p' (<type 'str'>)
Expectation (Physical representation for 1.17e-10): result = '117p' (<type 'str'>)

Physical representation for 5.4e-08 is correct (Content '54n’ and Type is <type 'str'>).

Result (Physical representation for 5.4e-08): 'b4n' (<type 'str'>)

Expectation (Physical representation for 5.4e-08): result = '54n' (<type 'str'>)

Physical representation for 2.53e-05 is correct (Content '25.3u’ and Type is <type 'str'>).

Result (Physical representation for 2.53e-05): '25.3u' (<type 'str'>)

Expectation (Physical representation for 2.53e-05): result = '25.3u' (<type 'str'>)

Physical representation for 0.1 is correct (Content '100m’ and Type is <type 'str'>).

Result (Physical representation for 0.1): '100m' (<type 'str'>)

Expectation (Physical representation for 0.1): result = '100m' (<type 'str'>)

Physical representation for 0 is correct (Content '0" and Type is <type 'str'>).

Result (Physical representation for 0): '0O' (<type 'str'>)

Expectation (Physical representation for 0): result = '0' (<type 'str'>)

Physical representation for 1 is correct (Content '1" and Type is <type 'str'>).

Result (Physical representation for 1): '1' (<type 'str'>)

Expectation (Physical representation for 1): result = '1' (<type 'str'>)

Physical representation for 1000 is correct (Content "1k’ and Type is <type 'str'>).

28 /

Unittest for stringtools

Result (Physical representation for 1000): '1lk' (<type 'str'>)

Expectation (Physical representation for 1000): result = 'lk' (<type 'str'>)

Physical representation for 1005001 is correct (Content '1.01M’ and Type is <type 'str'>).

Result (Physical representation for 1005001): '1.01M' (<type 'str'>)
Expectation (Physical representation for 1005001): result = '1.01M' (<type 'str'>)

Physical representation for 1004000000 is correct (Content '1G’ and Type is <type 'str'>).

Result (Physical representation for 1004000000): '1G' (<type 'str'>)
Expectation (Physical representation for 1004000000): result = '1G' (<type 'str'>)

Physical representation for 1003000000000 is correct (Content '1T" and Type is <type 'str'>).

Result (Physical representation for 1003000000000): 'IT' (<type 'str'>)
Expectation (Physical representation for 1003000000000): result = 'IT' (<type 'str'>)

Physical representation for 10000000000000000 is correct (Content '10P" and Type is <type 'str'>).

Result (Physical representation for 10000000000000000): '10P' (<type 'str'>)
Expectation (Physical representation for 10000000000000000): result = '10P' (<type 'str'>)

Physical representation for 17.17 is correct (Content '17.17' and Type is <type 'str'>).

Result (Physical representation for 17.17): '17.17' (<type 'str'>)

Expectation (Physical representation for 17.17): result = '17.17' (<type 'str'>)

Physical representation for 117000 is correct (Content '117k’ and Type is <type 'str'>).

Result (Physical representation for 117000): '117k' (<type 'str'>)

Expectation (Physical representation for 117000): result = '117k' (<type 'str'>)

Physical representation for 117.17 is correct (Content '117.2" and Type is <type 'str'>).

Result (Physical representation for 117.17): '117.2' (<type 'str'>)

Expectation (Physical representation for 117.17): result = '117.2' (<type 'str'>)
A.1.2 Time representation

Description
The library stringtools shall have a method physical repr, transforming an integer value to a time string like
HH:MM:SS.

29 /[72]

Unittest for stringtools

Testresult
This test was passed with the state:

Time representation for 59 is correct (Content '00:59" and Type is <type 'str'>).

Result (Time representation for 59): '00:59' (<type 'str'>)

Expectation (Time representation for 59): result = '00:59' (<type 'str'>)

Time representation for 60 is correct (Content '01:00" and Type is <type 'str'>).

Result (Time representation for 60): '01:00' (<type 'str'>)
Expectation (Time representation for 60): result = '01:00' (<type 'str'>)

Time representation for 3599 is correct (Content '59:59" and Type is <type 'str'>).

Result (Time representation for 3599): '59:59' (<type 'str'>)
Expectation (Time representation for 3599): result = '59:59' (<type 'str'>)

Time representation for 3600 is correct (Content '01:00:00" and Type is <type 'str'>).

Result (Time representation for 3600): '01:00:00' (<type 'str'>)
Expectation (Time representation for 3600): result = '01:00:00' (<type 'str'>)

Time representation for 86399 is correct (Content '23:59:59" and Type is <type 'str'>).

Result (Time representation for 86399): '23:59:59' (<type 'str'>)
Expectation (Time representation for 86399): result = '23:59:59' (<type 'str'>)

Time representation for 86400 is correct (Content '1D" and Type is <type 'str'>).

Result (Time representation for 86400): '1D' (<type 'str'>)
Expectation (Time representation for 86400): result = 'ID' (<type 'str'>)

Time representation for 86459 is correct (Content '1D 00:59" and Type is <type 'str'>).

Result (Time representation for 86459): '1D 00:59' (<type 'str'>)
Expectation (Time representation for 86459): result = '1D 00:59' (<type 'str'>)

Time representation for 90000 is correct (Content '1D 01:00:00" and Type is <type 'str’>).

Result (Time representation for 90000): '1D 01:00:00' (<type 'str'>)
Expectation (Time representation for 90000): result = '1D 01:00:00' (<type 'str'>)

A.1.3 Fraction representation
Description

The library stringtools shall have a method frac_repr, transforming a float or integer value to a fraction string with
a limited denominator.

30/ [72]

Unittest for stringtools

Testresult
This test was passed with the state:

Fraction representation for 17.4 is correct (Content '87/5" and Type is <type 'str'>).

Result (Fraction representation for 17.4): '87/5' (<type 'str'>)
Expectation (Fraction representation for 17.4): result = '87/5' (<type 'str'>)

Fraction representation for 0.25 is correct (Content '1/4" and Type is <type 'str'>).

Result (Fraction representation for 0.25): '1/4' (<type 'str'>)
Expectation (Fraction representation for 0.25): result = '1/4' (<type 'str'>)

Fraction representation for 0.1 is correct (Content '1/10" and Type is <type 'str'>).

Result (Fraction representation for 0.1): '1/10' (<type 'str'>)
Expectation (Fraction representation for 0.1): result = '1/10' (<type 'str'>)

Fraction representation for 0.01666667 is correct (Content '1/60" and Type is <type 'str'>).

Result (Fraction representation for 0.01666667): '1/60' (<type 'str'>)
Expectation (Fraction representation for 0.01666667): result = '1/60' (<type 'str'>)

A.1.4 Hexadecimal Values

Description

A Stream shall be converted to a human readable String containing all bytes as hexadecimal values seperated by a Space.

Reason for the implementation

Make non printable characters printable.

Fitcriterion

A stream shall be converted at least once and the hex values shall exist in the returnvalue in the correct order.

Testresult
This test was passed with the state:

Info Checking test pattern de ad be ef (<type 'str'>).

Pattern included all relevant information in the correct order.

Return value of hexlify is (4): de ad be ef
Using upper string for comparison: (4): DE AD BE EF

"DE" found in "(4): DE AD BE EF"... Reducing pattern
"AD" found in "AD BE EF"... Reducing pattern

"BE" found in "BE EF"... Reducing pattern

"EF" found in "EF"... Reducing pattern

31/

Unittest for stringtools

A.1.5 Number of Bytes

Description
The Length of a Stream surrounded by brakets shall be included in the human readable string.

Reason for the implementation
Show the length of a Stream without counting the seperated values.

Fitcriterion

The described pattern including the decimal number of bytes is included in the string for at least one Stream.

Testresult
This test was passed with the state:

Info Checking test pattern with length 4.

'(4) is in '(4): de ad be ef’ at position 0

A.1.6 CRLF-Filter

Description

The module stringtools shall have a method to replace carriage return and line feed to their escaped representation.

Reason for the implementation
Replace these characters to make output printable (e.g. for logging a string based protocol).

Fitcriterion

Filter at least one string and check at least one CR and one LF representation.

Testresult
This test was passed with the state:

Info Checking test pattern with length 4.

Returnvalue of linefeed_filter is correct (Content 'test//r//n123//r//n" and Type is <type 'str'>).

Result (Returnvalue of linefeed_filter): 'test\\r\\n123\\r\\n' (<type 'str'>)
Expectation (Returnvalue of linefeed_filter): result = 'test\\r\\n123\\r\\n' (<type 'str'>)

A.1.7 Compress

Description

The module stringtools shall have a method compressing a Stream with gzip.

32/

Unittest for stringtools

Reason for the implementation
Speed up transfer with low transfer rate.

Fitcriterion
Compressed Stream is extractable and results in the original data.

Testresult
This test was passed with the state:

Info Compressing Streams result in differnt streams with the same input stream. Therefore the test will compare
the decompressed data.

Info Compressing stream: (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff f ff fF ff ff ff ff ff fF fF fF

GZIP: Finished to compress a string (compression_rate=0.867, consumed_time=0.0s).

Info Extracting stream: (26): 1f 8b 08 00 84 e5 df 5f 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e 00 00 00

GZIP: Finished to extract a string (compression_rate=0.867, consumed_time=0.0s).

Extracted data is correct (Content (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff fF ff ff ff ff ff
ff ff ff f ff ff ff ff and Type is <type 'str'>).

Result (Extracted data): (30): 00 00 00 00 00 00 00 00 00 00O 00 00 00 00 00 ff ff ff ff ff ff
-~ ff £ff £ff ff ff ff ff ff ff (<type 'str'>)

Expectation (Extracted data): result = (30): 00 00 00 00 00 00 00 OO 00 00 OO 00 00 00 00 ff
- ff ff ff ff ff ff ff ff ff ff ff ff ff ff (<type 'str'>)

A.1.8 Extract

Description

The module stringtools shall have a method extracting a Stream with gzip.

Reason for the implementation
Speed up transfer with low transfer rate.

Fitcriterion

Extracted Stream is equal to the original compressed data.

33/

Unittest for stringtools

Testresult
This test was passed with the state:

Info Extracting stream: (26): 1f 8b 08 00 34 0 04 5d 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e 00 00 00

GZIP: Finished to extract a string (compression_rate=0.867, consumed_time=0.0s).

Extracted data is correct (Content '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff ff ff
ff ff ff £f ff ff ff ff' and Type is <type 'str'>).

Result (Extracted data): '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff
- ff f£ff £ff ff ff ff ff ff £ff £ff' (<type 'str'>)

Expectation (Extracted data): result = '(30): 00 00 00 00 00 00 00 00 00 00 OO OO OO OO 00 ff
- ff ff ff ff ff ff ff ff ff ff ff ff ff ff' (<type 'str'>)

A.1.9 Frame creation

Description

The CSP module shall support a method to create a Frame from a stream.

Reason for the implementation

Simple message or frame generation for streams (e.g. Keyboard (user input), RFID-Reader, ...).

Fitcriterion

Creation of a testframe and checking the result.

Testresult
This test was passed with the state:

Info Creating testframe for ":testframe: for csp”

CSP-Frame is correct (Content ":testframe: for csp/n" and Type is <type 'str'>).

Result (CSP-Frame): ':testframe: for csp\n' (<type 'str'>)

Expectation (CSP-Frame): result = ':testframe: for csp\n' (<type 'str'>)
A.1.10 Frame creation error

Description

The Frame creation Method shall raise ValueError, if a frame separation character is in the Source-String.

Reason for the implementation
String including separation charcter will be splitted in pieces while processing after transport.

34/

Unittest for stringtools

Fitcriterion
ValueErroro is raised for at least one String including the separation character.

Testresult
This test was passed with the state:

Info Creating testframe for " :testframe: for csp”

CSP-Frame is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (CSP-Frame): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (CSP-Frame): result = <type 'exceptions.ValueError'> (<type 'type'>)

A.1.11 Frame processing

Description
The CSP Module shall support a class including a method to process stream snipets of variable length. This Method
shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation
Support message analysis of a stream with every size.

Fitcriterion
At least one frame given in at least two snippets is identified correctly.

Testresult
This test was passed with the state:

Info Processing testframe: ":testframe: for csp/n” in two snippets

CSP: Leaving data in buffer (to be processed next time): (10): 3a 74 65 73 74 66 72 61 6d 65
CSP: message identified - (19): 3a 74 65 73 74 66 72 61 6d 65 3a 20 66 6f 72 20 63 73 70

First processed CSP-Snippet is correct (Content [] and Type is <type 'list'>).

Result (First processed CSP-Snippet): [] (<type 'list'>)

Expectation (First processed CSP-Snippet): result = [] (<type 'list'>)

Final processed CSP-Frame is correct (Content [":testframe: for csp’] and Type is <type 'list'>).

Result (Final processed CSP-Frame): [':testframe: for csp'] (<type 'list'>)

Expectation (Final processed CSP-Frame): result = [':testframe: for csp'] (<type 'list'>)

35/

Unittest for stringtools

A.1.12 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation
Type restriction.

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state:

Info Processing wrong data (list)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str’>).

Result (Buffer still empty): '' (<type 'str'>)
Expectation (Buffer still empty): result = '' (<type 'str'>)

Info Processing wrong data (int)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str'>).

Result (Buffer still empty): '' (<type 'str'>)
Expectation (Buffer still empty): result = '' (<type 'str'>)

Info Processing wrong data (unicode)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

36 /

Unittest for stringtools

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str’>).

Result (Buffer still empty): '' (<type 'str'>)

Expectation (Buffer still empty): result = '' (<type 'str'>)
A.1.13 Frame creation

Description
A frame creation method shall create a frame out of given input data.

Reason for the implementation
Message or Frame generation for streams (e.g. data transfer via bluetooth, ethernet, ...).

Fitcriterion

Creation of a testframe and checking the result.

Testresult
This test was passed with the state:

Info Creating testframe for " testframe for stp”

STP-Frame is correct (Content ":<testframe for stp:>" and Type is <type 'str'>).

Result (STP-Frame): ':<testframe for stp:>' (<type 'str'>)

Expectation (STP-Frame): result = ':<testframe for stp:>' (<type 'str'>)
A.1.14 Frame creation - Start pattern and end pattern inside a message

Description

The frame creation method shall support existance of the start or end pattern in the data to be framed.

Reason for the implementation
Possibility to send any kind of data (including the patterns).

Fitcriterion

Creation of a testframe out of data including at least one start pattern and one end pattern and checking the result.

37/

Unittest for stringtools

Testresult
This test was passed with the state:

Info Creating testframe including start and end pattern for "testframe for :<stp:>"

STP-Frame is correct (Content ":<testframe for :=<stp:=:>" and Type is <type 'str'>).

Result (STP-Frame): ':<testframe for :=<stp:=>:>' (<type 'str'>)

Expectation (STP-Frame): result = ':<testframe for :=<stp:=>:>' (<type 'str'>)
A.1.15 Frame processing
Description

The STP Module shall support a class including a method to process stream snipets of variable length. This Method
shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation
Support message analysis of a stream with every size.

Fitcriterion
At least one frame given in at least two snippets is identified correctly.

Testresult
This test was passed with the state:

Info Processing testframe: ":<testframe for stp:>"

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (17): 74 65 73 74 66 72 61 6d 65 20 66 6f 72 20 73 74 70

First processed STP snippet is correct (Content [| and Type is <type 'list'>).

Result (First processed STP snippet): [] (<type 'list'>)
Expectation (First processed STP snippet): result = [] (<type 'list'>)

Final processed STP snippet is correct (Content ['testframe for stp’] and Type is <type 'list'>).

Result (Final processed STP snippet): ['testframe for stp'] (<type 'list'>)
Expectation (Final processed STP snippet): result = ['testframe for stp'] (<type 'list'>)

38/

Unittest for stringtools

A.1.16 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation
Type restriction.

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state:

Info Processing wrong data (list)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str’>).

Result (Buffer still empty): '' (<type 'str'>)
Expectation (Buffer still empty): result = '' (<type 'str'>)

Info Processing wrong data (int)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str'>).

Result (Buffer still empty): '' (<type 'str'>)
Expectation (Buffer still empty): result = '' (<type 'str'>)

Info Processing wrong data (unicode)

Wrong data exception is correct (Content <type 'exceptions.ValueError'> and Type is <type 'type'>).

39/

Unittest for stringtools

Result (Wrong data exception): <type 'exceptions.ValueError'> (<type 'type'>)

Expectation (Wrong data exception): result = <type 'exceptions.ValueError'> (<type 'type'>)

Buffer still empty is correct (Content " and Type is <type 'str’>).

Result (Buffer still empty): '' (<type 'str'>)

Expectation (Buffer still empty): result = '' (<type 'str'>)

A.1.17 Frame processing - Start pattern and end pattern inside a message

Reason for the implementation
Possibility to send any kind of data (including the patterns).

Testresult
This test was passed with the state:

Info Processing testframe: " :<testframe for :=<stp:=:>"

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: store sync pattern (3a 3d) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: store sync pattern (3a 3d) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (21): 74 65 73 74 66 72 61 6d 65 20 66 6f 72 20 3a 3c 73 74 70 3a 3e

Processed STP-Frame is correct (Content ['testframe for :<stp:>'] and Type is <type 'list'>).

Result (Processed STP-Frame): ['testframe for :<stp:>'] (<type 'list'>)

Expectation (Processed STP-Frame): result = ['testframe for :<stp:>'] (<type 'list'>)
A.1.18 Frame processing - Data before the start pattern

Description
Data before the start pattern shall be ignored. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

40/

Unittest for stringtools

Testresult
This test was passed with the state:

Info Processing testframe: " _:<testframe for stp:>"

STP: no data sync (5f) received => ignoring byte
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (17): 74 65 73 74 66 72 61 64 65 20 66 6f 72 20 73 74 70

Processed STP-Frame is correct (Content ['testframe for stp’] and Type is <type 'list'>).

Result (Processed STP-Frame): ['testframe for stp'] (<type 'list'>)

Expectation (Processed STP-Frame): result = ['testframe for stp'] (<type 'list'>)

A.1.19 Frame processing - Incorrect start patterns

Description
On receiving an incorrect start pattern, STP shall stay in ESCAPE_1, in case of data sync was received twice or back to
state IDLE in all other faulty start patterns starting with data sync. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Processing data with an insufficient start pattern.

Sending ':1' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1
STP: no start pattern (3a 31) received => changing state STP_STATE_ESCAPE_1 -> STP_STATE_IDLE

Return value list if processing incorrect start of frame is correct (Content [[]] and Type is <type 'list’>).

Result (Return value list if processing incorrect start of frame): [[1] (<type 'list'>)

Expectation (Return value list if processing incorrect start of frame): result = [[]]
- (<type 'list'>)

State after processing incorrect start of frame is correct (Content 0 and Type is <type 'int’>).

41/

Unittest for stringtools

Result (State after processing incorrect start of frame): 0 (<type 'int'>)

Expectation (State after processing incorrect start of frame): result = 0 (<type 'int'>)

Info Processing data with an insufficient start pattern (two times sync).

Sending '::' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1
STP: 2nd data sync (3a) received => keep state

Return value list if processing data_sync twice is correct (Content [[]] and Type is <type 'list’>).

Result (Return value list if processing data_sync twice): [[1] (<type 'list'>)

Expectation (Return value list if processing data_sync twice): result = [[] 1 (<type
< 'list'>)

State after processing data_sync twice is correct (Content 1 and Type is <type 'int'>).

Result (State after processing data_sync twice): 1 (<type 'int'>)

Expectation (State after processing data_sync twice): result = 1 (<type 'int'>)

A.1.20 Frame processing - Incorrect end pattern

Description

On receiving an incorrect end pattern, STP shall change to state STORE_DATA, in case of a start pattern, to ESCAPE_1,
in case of data sync was received twice or back to state IDLE in all other faulty end patterns starting with data sync. A
warning shall be given to the logger.

Reason for the implementation
Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Processing data with an insufficient end pattern.

Sending ':<te:d' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2
STP: data (64) received => changing state STP_STATE_ESCAPE_2 -> STP_STATE_IDLE
STP: Chunking "(2): 74 65" from buffer

Return value list if processing data_sync and data again after start of frame is correct (Content [[]] and
Type is <type 'list'>).

42/

Result (Return value list if processing data_sync and data again after start of frame): [[
< 11 (<type 'list'>)

Expectation (Return value list if processing data_sync and data again after start of frame):
— result = [[]] (<type 'list'>)

State after processing data_sync and data again after start of frame is correct (Content 0 and Type is
<type 'int'>).

Result (State after processing data_sync and data again after start of frame): O (<type

< 'int'>)

Expectation (State after processing data_sync and data again after start of frame): result =
— 0 (<type 'int'>)

Buffer size after processing data with insufficient end pattern is correct (Content 0 and Type is <type
"int'>).

Result (Buffer size after processing data with insufficient end pattern): O (<type 'int'>)

Expectation (Buffer size after processing data with insufficient end pattern): result = 0
— (<type 'int'>)

Info Processing data with an insufficient end pattern (start pattern instead of end pattern).

Sending ':<te:<' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: Chunking "(2): 74 65" from buffer

Return value list if processing 2nd start of frame is correct (Content [[]] and Type is <type 'list'>).

Result (Return value list if processing 2nd start of frame): [[]] (<type 'list'>)

Expectation (Return value list if processing 2nd start of frame): result = [[] 1 (<type
- 'list'>)

State after processing 2nd start of frame is correct (Content 3 and Type is <type 'int'>).

Result (State after processing 2nd start of frame): 3 (<type 'int'>)

Expectation (State after processing 2nd start of frame): result = 3 (<type 'int'>)

Buffer size after processing 2nd start of frame is correct (Content 0 and Type is <type 'int">).

Result (Buffer size after processing 2nd start of frame): O (<type 'int'>)

Expectation (Buffer size after processing 2nd start of frame): result = 0 (<type 'int'>)

Info Processing data with an insufficient end pattern (two times sync instead of end pattern).

Unittest for stringtools

Sending ':<te::' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2
STP: second data sync (3a) received => changing state STP_STATE_ESCAPE_2 -> STP_STATE_ESCAPE_1
STP: Chunking "(2): 74 65" from buffer

Return value list if processing data_sync twice after start of frame is correct (Content [[|]] and Type is
<type 'list'>).

Result (Return value list if processing data_sync twice after start of frame): [[]]
- (<type 'list'>)

Expectation (Return value list if processing data_sync twice after start of frame): result =
- [[11 (<type 'list'>)

State after processing data_sync twice after start of frame is correct (Content 1 and Type is <type 'int'>).

Result (State after processing data_sync twice after start of frame): 1 (<type 'int'>)

Expectation (State after processing data_sync twice after start of frame): result = 1 (<type
— 'int'>)

A.1.21 Frame processing - After state corruption
Description

The state of STP shall be set to IDLE, after an unknown state was recognised. The currently processed data shall be
processed again. An error shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Corrupting stp state and processing data.

44 /

Unittest for stringtools

Sending ':<te' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

Setting state of stp to 255.

Sending ':<te' to stp.

STP: unknown state (255) => adding value (3a) back to data again and changing state ->
— STP_STATE_IDLE

STP: Chunking "(2): 74 65" from buffer

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

Return value list if processing start of a frame after state had been corrupted is correct (Content [[]] and
Type is <type 'list’>).

Result (Return value list if processing start of a frame after state had been corrupted): [[
-~ 11 (<type 'list'>)

Expectation (Return value list if processing start of a frame after state had been

— corrupted): result = [[1] (<type 'list'>)

State after processing start of a frame after state had been corrupted is correct (Content 3 and Type is
<type 'int">).

Result (State after processing start of a frame after state had been corrupted): 3 (<type

— 'int‘>)

Expectation (State after processing start of a frame after state had been corrupted): result
— = 3 (<type 'int'>)

Buffer size after corrupting stp state is correct (Content 2 and Type is <type 'int'>).

Result (Buffer size after corrupting stp state): 2 (<type 'int'>)

Expectation (Buffer size after corrupting stp state): result = 2 (<type 'int'>)

B Trace for testrun with python 3.8.5 (final)

B.1 Tests with status Info (21)
B.1.1 Physical representation

Description
The library stringtools shall have a method physical_repr, transforming a float or integer value to a string with a
1 to 3 digit value followed by the physical prefix for the unit.

45/ [72

Unittest for stringtools

Testresult
This test was passed with the state:

Physical representation for 1.17e-10 is correct (Content '117p" and Type is <class 'str'>).

Result (Physical representation for 1.17e-10): '117p' (<class 'str'>)

Expectation (Physical representation for 1.17e-10): result = '117p' (<class 'str'>)

Physical representation for 5.4e-08 is correct (Content '54n" and Type is <class 'str'>).

Result (Physical representation for 5.4e-08): 'b4n' (<class 'str'>)

Expectation (Physical representation for 5.4e-08): result = 'B4n' (<class 'str'>)

Physical representation for 2.53e-05 is correct (Content '25.3u’ and Type is <class 'str'>).

Result (Physical representation for 2.53e-05): '25.3u' (<class 'str'>)

Expectation (Physical representation for 2.53e-05): result = '25.3u' (<class 'str'>)

Physical representation for 0.1 is correct (Content '100m’ and Type is <class 'str'>).

Result (Physical representation for 0.1): '100m' (<class 'str'>)

Expectation (Physical representation for 0.1): result = '100m' (<class 'str'>)

Physical representation for 0 is correct (Content ‘0" and Type is <class 'str'>).

Result (Physical representation for 0): 'O' (<class 'str'>)

Expectation (Physical representation for 0): result = '0O' (<class 'str'>)

Physical representation for 1 is correct (Content '1" and Type is <class 'str'>).

Result (Physical representation for 1): '1' (<class 'str'>)

Expectation (Physical representation for 1): result = 'l' (<class 'str'>)

Physical representation for 1000 is correct (Content "1k’ and Type is <class 'str'>).

Result (Physical representation for 1000): '1k' (<class 'str'>)

Expectation (Physical representation for 1000): result = 'lk' (<class 'str'>)

Physical representation for 1005001 is correct (Content '1.01M’ and Type is <class 'str'>).

Result (Physical representation for 1005001): '1.01M' (<class 'str'>)

Expectation (Physical representation for 1005001): result = '1.01M' (<class 'str'>)

Physical representation for 1004000000 is correct (Content '1G’ and Type is <class 'str'>).

46 /72

Unittest for stringtools

Result (Physical representation for 1004000000): '1G' (<class 'str'>)

Expectation (Physical representation for 1004000000): result = '1G' (<class 'str'>)

Physical representation for 1003000000000 is correct (Content '1T" and Type is <class 'str'>).

Result (Physical representation for 1003000000000): 'IT' (<class 'str'>)
Expectation (Physical representation for 1003000000000): result = 'IT' (<class 'str'>)

Physical representation for 10000000000000000 is correct (Content '10P" and Type is <class 'str'>).

Result (Physical representation for 10000000000000000): '10P' (<class 'str'>)
Expectation (Physical representation for 10000000000000000): result = '10P' (<class 'str'>)

Physical representation for 17.17 is correct (Content '17.17" and Type is <class 'str'>).

Result (Physical representation for 17.17): '17.17' (<class 'str'>)

Expectation (Physical representation for 17.17): result = '17.17' (<class 'str'>)

Physical representation for 117000 is correct (Content '117k" and Type is <class 'str'>).

Result (Physical representation for 117000): '117k' (<class 'str'>)

Expectation (Physical representation for 117000): result = '117k' (<class 'str'>)

Physical representation for 117.17 is correct (Content '117.2" and Type is <class 'str'>).

Result (Physical representation for 117.17): '117.2' (<class 'str'>)

Expectation (Physical representation for 117.17): result = '117.2' (<class 'str'>)

B.1.2 Time representation

Description
The library stringtools shall have a method physical_repr, transforming an integer value to a time string like
HH:MM:SS.

Testresult
This test was passed with the state:

Time representation for 59 is correct (Content '00:59" and Type is <class 'str'>).

Result (Time representation for 59): '00:59' (<class 'str'>)

Expectation (Time representation for 59): result = '00:59' (<class 'str'>)

Time representation for 60 is correct (Content '01:00" and Type is <class 'str'>).

47/

Unittest for stringtools

Result (Time representation for 60): '01:00' (<class 'str'>)

Expectation (Time representation for 60): result = '01:00' (<class 'str'>)

Time representation for 3599 is correct (Content '59:59" and Type is <class 'str'>).

Result (Time representation for 3599): '59:59' (<class 'str'>)

Expectation (Time representation for 3599): result = '59:59' (<class 'str'>)

Time representation for 3600 is correct (Content '01:00:00" and Type is <class 'str'>).

Result (Time representation for 3600): '01:00:00' (<class 'str'>)

Expectation (Time representation for 3600): result = '01:00:00' (<class 'str'>)

Time representation for 86399 is correct (Content '23:59:59" and Type is <class 'str'>).

Result (Time representation for 86399): '23:59:59' (<class 'str'>)

Expectation (Time representation for 86399): result = '23:59:59' (<class 'str'>)

Time representation for 86400 is correct (Content '1D" and Type is <class 'str'>).

Result (Time representation for 86400): '1D' (<class 'str'>)

Expectation (Time representation for 86400): result = '1D' (<class 'str'>)

Time representation for 86459 is correct (Content '1D 00:59" and Type is <class 'str'>).

Result (Time representation for 86459): '1D 00:59' (<class 'str'>)

Expectation (Time representation for 86459): result = '1D 00:59' (<class 'str'>)

Time representation for 90000 is correct (Content '1D 01:00:00' and Type is <class 'str'>).

Result (Time representation for 90000): '1D 01:00:00' (<class 'str'>)
Expectation (Time representation for 90000): result = '1D 01:00:00' (<class 'str'>)

B.1.3 Fraction representation

Description
The library stringtools shall have a method frac_repr, transforming a float or integer value to a fraction string with

a limited denominator.

Testresult
This test was passed with the state:

Fraction representation for 17.4 is correct (Content '87/5' and Type is <class 'str'>).

48 /

Unittest for stringtools

Result (Fraction representation for 17.4): '87/5' (<class 'str'>)

Expectation (Fraction representation for 17.4): result = '87/5' (<class 'str'>)

Fraction representation for 0.25 is correct (Content '1/4" and Type is <class 'str'>).

Result (Fraction representation for 0.25): '1/4' (<class 'str'>)

Expectation (Fraction representation for 0.25): result = '1/4' (<class 'str'>)

Fraction representation for 0.1 is correct (Content '1/10" and Type is <class 'str'>).

Result (Fraction representation for 0.1): '1/10' (<class 'str'>)

Expectation (Fraction representation for 0.1): result = '1/10' (<class 'str'>)

Fraction representation for 0.01666667 is correct (Content '1/60" and Type is <class 'str'>).

Result (Fraction representation for 0.01666667): '1/60' (<class 'str'>)

Expectation (Fraction representation for 0.01666667): result = '1/60' (<class 'str'>)

B.1.4 Hexadecimal Values

Description
A Stream shall be converted to a human readable String containing all bytes as hexadecimal values seperated by a Space.

Reason for the implementation
Make non printable characters printable.

Fitcriterion
A stream shall be converted at least once and the hex values shall exist in the returnvalue in the correct order.

Testresult
This test was passed with the state:

Info Checking test pattern de ad be ef (<class 'bytes'>).

Pattern included all relevant information in the correct order.

Return value of hexlify is (4): de ad be ef
Using upper string for comparison: (4): DE AD BE EF

"DE" found in "(4): DE AD BE EF"... Reducing pattern
"AD" found in "AD BE EF"... Reducing pattern

"BE" found in "BE EF"... Reducing pattern

"EF" found in "EF"... Reducing pattern

49/

Unittest for stringtools

B.1.5 Number of Bytes

Description
The Length of a Stream surrounded by brakets shall be included in the human readable string.

Reason for the implementation
Show the length of a Stream without counting the seperated values.

Fitcriterion
The described pattern including the decimal number of bytes is included in the string for at least one Stream.

Testresult
This test was passed with the state:

Info Checking test pattern with length 4.

'(4)" is in '(4): de ad be ef" at position 0

B.1.6 CRLF-Filter

Description
The module stringtools shall have a method to replace carriage return and line feed to their escaped representation.

Reason for the implementation
Replace these characters to make output printable (e.g. for logging a string based protocol).

Fitcriterion
Filter at least one string and check at least one CR and one LF representation.

Testresult
This test was passed with the state:

Info Checking test pattern with length 4.

Returnvalue of linefeed_filter is correct (Content b'test//r//n123//r//n’ and Type is <class 'bytes'>).

Result (Returnvalue of linefeed_filter): b'test\\r\\n123\\r\\n' (<class 'bytes'>)

Expectation (Returnvalue of linefeed_filter): result = b'test\\r\\n123\\r\\n' (<class
< 'bytes'>)

50 /

Unittest for stringtools

B.1.7 Compress

Description
The module stringtools shall have a method compressing a Stream with gzip.

Reason for the implementation
Speed up transfer with low transfer rate.

Fitcriterion

Compressed Stream is extractable and results in the original data.

Testresult
This test was passed with the state:

Info Compressing Streams result in differnt streams with the same input stream. Therefore the test will compare
the decompressed data.

Info Compressing stream: (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff fFf ff ff ff ff f £f ff ff fF fF

GZIP: Finished to compress a string (compression_rate=0.867, consumed_time=0.0s).

Info Extracting stream: (26): 1f 8b 08 00 84 e5 df 5f 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e 00 00 00

GZIP: Finished to extract a string (compression_rate=0.867, consumed_time=0.0s) .

Extracted data is correct (Content (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff fFf fF
ff ff ff ff f ff ff ff and Type is <class 'bytes'>).

Result (Extracted data): (30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff ff
— ff ff ff ff ff ff ff ff ff (<class 'bytes'>)

Expectation (Extracted data): result = (30): 00 00 00 00 00 00 OO0 OO OO OO OO OO OO OO OO ff
— ff ff ff ff ff ff ff ff ff ff ff ff ff ff (<class 'bytes'>)

B.1.8 Extract

Description
The module stringtools shall have a method extracting a Stream with gzip.

Reason for the implementation
Speed up transfer with low transfer rate.

Fitcriterion
Extracted Stream is equal to the original compressed data.

51/

Unittest for stringtools

Testresult
This test was passed with the state:

Info Extracting stream: (26): 1f 8b 08 00 34 0 04 5d 02 ff 63 60 40 01 ff 51 01 00 2d 8a 7d de 1e 00 00 00

GZIP: Finished to extract a string (compression_rate=0.867, consumed_time=0.0s).

Extracted data is correct (Content '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff* and Type is <class 'str'>).

Result (Extracted data): '(30): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ff ff ff ff ff
- ff ff ff ff ff ff ff ff ff ff' (<class 'str'>)

Expectation (Extracted data): result = '(30): 00 00 00 00 00 00 00 00 00 00 OO OO OO OO 00 ff
- ff ff ff ff ff ff ff ff ff ff ff ff ff ff' (<class 'str'>)

B.1.9 Frame creation

Description

The CSP module shall support a method to create a Frame from a stream.

Reason for the implementation

Simple message or frame generation for streams (e.g. Keyboard (user input), RFID-Reader, ...).

Fitcriterion

Creation of a testframe and checking the result.

Testresult
This test was passed with the state:

Info Creating testframe for 'b':testframe: for csp”

CSP-Frame is correct (Content b':testframe: for csp/n’ and Type is <class 'bytes'>).

Result (CSP-Frame): b':testframe: for csp\n' (<class 'bytes'>)

Expectation (CSP-Frame): result = b':testframe: for csp\n' (<class 'bytes'>)
B.1.10 Frame creation error

Description

The Frame creation Method shall raise ValueError, if a frame separation character is in the Source-String.

Reason for the implementation
String including separation charcter will be splitted in pieces while processing after transport.

52/

Unittest for stringtools

Fitcriterion
ValueErroro is raised for at least one String including the separation character.

Testresult
This test was passed with the state:

Info Creating testframe for 'b’:testframe: for csp”

CSP-Frame is correct (Content <class "ValueError'> and Type is <class "type'>).

Result (CSP-Frame): <class 'ValueError'> (<class 'type'>)

Expectation (CSP-Frame): result = <class 'ValueError'> (<class 'type'>)

B.1.11 Frame processing

Description
The CSP Module shall support a class including a method to process stream snipets of variable length. This Method
shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation
Support message analysis of a stream with every size.

Fitcriterion

At least one frame given in at least two snippets is identified correctly.

Testresult
This test was passed with the state:

Info Processing testframe: 'b’:testframe: for csp/n” in two snippets

CSP: Leaving data in buffer (to be processed next time): (10): 3a 74 65 73 74 66 72 61 6d 65
CSP: message identified - (19): 3a 74 65 73 74 66 72 61 6d 65 3a 20 66 6f 72 20 63 73 70

First processed CSP-Snippet is correct (Content [] and Type is <class 'list’>).

Result (First processed CSP-Snippet): [] (<class 'list'>)

Expectation (First processed CSP-Snippet): result = [] (<class 'list'>)

Final processed CSP-Frame is correct (Content [b':testframe: for csp’] and Type is <class 'list’>).

Result (Final processed CSP-Frame): [b':testframe: for csp'] (<class 'list'>)

Expectation (Final processed CSP-Frame): result = [b':testframe: for csp'] (<class 'list'>)

53/

Unittest for stringtools

B.1.12 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation
Type restriction.

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state:

Info Processing wrong data (list)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Result (Buffer still empty): b'' (<class 'bytes'>)
Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

Info Processing wrong data (int)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Result (Buffer still empty): b'' (<class 'bytes'>)
Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

Info Processing wrong data (str)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

54 /

Unittest for stringtools

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes’>).

Result (Buffer still empty): b'' (<class 'bytes'>)

Expectation (Buffer still empty): result = b'' (<class 'bytes'>)
B.1.13 Frame creation

Description
A frame creation method shall create a frame out of given input data.

Reason for the implementation
Message or Frame generation for streams (e.g. data transfer via bluetooth, ethernet, ...).

Fitcriterion

Creation of a testframe and checking the result.

Testresult
This test was passed with the state:

Info Creating testframe for 'b'testframe for stp”

STP-Frame is correct (Content b':<testframe for stp:>" and Type is <class 'bytes'>).

Result (STP-Frame): b':<testframe for stp:>' (<class 'bytes'>)

Expectation (STP-Frame): result = b':<testframe for stp:>' (<class 'bytes'>)
B.1.14 Frame creation - Start pattern and end pattern inside a message

Description

The frame creation method shall support existance of the start or end pattern in the data to be framed.

Reason for the implementation
Possibility to send any kind of data (including the patterns).

Fitcriterion

Creation of a testframe out of data including at least one start pattern and one end pattern and checking the result.

55 /

Unittest for stringtools

Testresult
This test was passed with the state:

Info Creating testframe including start and end pattern for 'b'testframe for :<stp:>"

STP-Frame is correct (Content b":<testframe for :=<stp:=:>" and Type is <class 'bytes'>).

Result (STP-Frame): b':<testframe for :=<stp:=>:>' (<class 'bytes'>)

Expectation (STP-Frame): result = b':<testframe for :=<stp:=>:>' (<class 'bytes'>)
B.1.15 Frame processing
Description

The STP Module shall support a class including a method to process stream snipets of variable length. This Method
shall return an empty list, if no frame has been detected, otherwise it shall return a list including detected frame(s).

Reason for the implementation
Support message analysis of a stream with every size.

Fitcriterion
At least one frame given in at least two snippets is identified correctly.

Testresult
This test was passed with the state:

Info Processing testframe: 'b’:<testframe for stp:>"

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (17): 74 65 73 74 66 72 61 6d 65 20 66 6f 72 20 73 74 70

First processed STP snippet is correct (Content [] and Type is <class 'list'>).

Result (First processed STP snippet): [] (<class 'list'>)

Expectation (First processed STP snippet): result = [] (<class 'list'>)

Final processed STP snippet is correct (Content [b'testframe for stp’] and Type is <class 'list'>).

Result (Final processed STP snippet): [b'testframe for stp'] (<class 'list'>)

Expectation (Final processed STP snippet): result = [b'testframe for stp'] (<class 'list'>)

56 /

Unittest for stringtools

B.1.16 Frame processing - Input data type error

Description
If the input data is not bytes for python3 or str for python 2, the process method shall raise TypeError.

Reason for the implementation
Type restriction.

Fitcriterion
At least the following types return TypeError (list, int, str for python3, unicode for python 2).

Testresult
This test was passed with the state:

Info Processing wrong data (list)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Result (Buffer still empty): b'' (<class 'bytes'>)
Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

Info Processing wrong data (int)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Result (Buffer still empty): b'' (<class 'bytes'>)
Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

Info Processing wrong data (str)

Wrong data exception is correct (Content <class 'ValueError'> and Type is <class 'type'>).

57 /

Unittest for stringtools

Result (Wrong data exception): <class 'ValueError'> (<class 'type'>)

Expectation (Wrong data exception): result = <class 'ValueError'> (<class 'type'>)

Buffer still empty is correct (Content b” and Type is <class 'bytes'>).

Result (Buffer still empty): b'' (<class 'bytes'>)

Expectation (Buffer still empty): result = b'' (<class 'bytes'>)

B.1.17 Frame processing - Start pattern and end pattern inside a message

Reason for the implementation
Possibility to send any kind of data (including the patterns).

Testresult
This test was passed with the state:

Info Processing testframe: 'b":<testframe for :=<stp:=:>"

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: store sync pattern (3a 3d) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: store sync pattern (3a 3d) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (21): 74 65 73 74 66 72 61 6d 65 20 66 6f 72 20 3a 3c 73 74 70 3a 3e

Processed STP-Frame is correct (Content [b'testframe for :<stp:>'] and Type is <class 'list’>).

Result (Processed STP-Frame): [b'testframe for :<stp:>'] (<class 'list'>)

Expectation (Processed STP-Frame): result = [b'testframe for :<stp:>'] (<class 'list'>)
B.1.18 Frame processing - Data before the start pattern

Description
Data before the start pattern shall be ignored. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

58 /

Unittest for stringtools

Testresult
This test was passed with the state:

Info Processing testframe: 'b’_:<testframe for stp:>"

STP: no data sync (5f) received => ignoring byte
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: end pattern (3a 3e) received => storing message and changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_IDLE

STP: message identified - (17): 74 65 73 74 66 72 61 64 65 20 66 6f 72 20 73 74 70

Processed STP-Frame is correct (Content [b'testframe for stp’] and Type is <class 'list’>).

Result (Processed STP-Frame): [b'testframe for stp'] (<class 'list'>)

Expectation (Processed STP-Frame): result = [b'testframe for stp'] (<class 'list'>)

B.1.19 Frame processing - Incorrect start patterns

Description
On receiving an incorrect start pattern, STP shall stay in ESCAPE_1, in case of data sync was received twice or back to
state IDLE in all other faulty start patterns starting with data sync. A warning shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Processing data with an insufficient start pattern.

Sending b':1' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1
STP: no start pattern (3a 31) received => changing state STP_STATE_ESCAPE_1 -> STP_STATE_IDLE

Return value list if processing incorrect start of frame is correct (Content [[]] and Type is <class 'list’>).

Result (Return value list if processing incorrect start of frame): [[1] (<class 'list'>)

Expectation (Return value list if processing incorrect start of frame): result = [[]]
— (<class 'list'>)

State after processing incorrect start of frame is correct (Content 0 and Type is <class 'int'>).

59 /

Unittest for stringtools

Result (State after processing incorrect start of frame): O (<class 'int'>)

Expectation (State after processing incorrect start of frame): result = 0 (<class 'int'>)

Info Processing data with an insufficient start pattern (two times sync).

Sending b'::' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1
STP: 2nd data sync (3a) received => keep state

Return value list if processing data_sync twice is correct (Content [[]] and Type is <class 'list’>).

Result (Return value list if processing data_sync twice): [[1] (<class 'list'>)

Expectation (Return value list if processing data_sync twice): result = [[]] (<class
< 'list'>)

State after processing data_sync twice is correct (Content 1 and Type is <class 'int">).

Result (State after processing data_sync twice): 1 (<class 'int'>)

Expectation (State after processing data_sync twice): result = 1 (<class 'int'>)

B.1.20 Frame processing - Incorrect end pattern

Description

On receiving an incorrect end pattern, STP shall change to state STORE_DATA, in case of a start pattern, to ESCAPE_1,
in case of data sync was received twice or back to state IDLE in all other faulty end patterns starting with data sync. A
warning shall be given to the logger.

Reason for the implementation
Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Processing data with an insufficient end pattern.

Sending b':<te:d' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2
STP: data (64) received => changing state STP_STATE_ESCAPE_2 -> STP_STATE_IDLE
STP: Chunking "(2): 74 65" from buffer

Return value list if processing data_sync and data again after start of frame is correct (Content [[]] and
Type is <class 'list'>).

60 /

Result (Return value list if processing data_sync and data again after start of frame): [[
< 1 1 (<class 'list'>)

Expectation (Return value list if processing data_sync and data again after start of frame):
— result = [[]] (<class 'list'>)

State after processing data_sync and data again after start of frame is correct (Content 0 and Type is
<class 'int'>).

Result (State after processing data_sync and data again after start of frame): 0 (<class

< 'int'>)

Expectation (State after processing data_sync and data again after start of frame): result =
— 0 (<class 'int'>)

Buffer size after processing data with insufficient end pattern is correct (Content 0 and Type is <class
"int'>).

Result (Buffer size after processing data with insufficient end pattern): O (<class 'int'>)

Expectation (Buffer size after processing data with insufficient end pattern): result = 0
— (<class 'int'>)

Info Processing data with an insufficient end pattern (start pattern instead of end pattern).

Sending b':<te:<' to stp.

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1
STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->

— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_2 ->
— STP_STATE_STORE_DATA

STP: Chunking "(2): 74 65" from buffer

Return value list if processing 2nd start of frame is correct (Content [[]] and Type is <class 'list">).

Result (Return value list if processing 2nd start of frame): [[]] (<class 'list'>)

Expectation (Return value list if processing 2nd start of frame): result = [[]] (<class
- 'list'>)

State after processing 2nd start of frame is correct (Content 3 and Type is <class 'int'>).

Result (State after processing 2nd start of frame): 3 (<class 'int'>)

Expectation (State after processing 2nd start of frame): result = 3 (<class 'int'>)

Buffer size after processing 2nd start of frame is correct (Content 0 and Type is <class 'int’>).

Result (Buffer size after processing 2nd start of frame): 0 (<class 'int'>)

Expectation (Buffer size after processing 2nd start of frame): result = 0 (<class 'int'>)

Info Processing data with an insufficient end pattern (two times sync instead of end pattern).

Unittest for stringtools

Sending b':<te::' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

STP: data sync (3a) received => changing state STP_STATE_STORE_DATA -> STP_STATE_ESCAPE_2
STP: second data sync (3a) received => changing state STP_STATE_ESCAPE_2 -> STP_STATE_ESCAPE_1
STP: Chunking "(2): 74 65" from buffer

Return value list if processing data_sync twice after start of frame is correct (Content [[|]] and Type is
<class 'list">).

Result (Return value list if processing data_sync twice after start of frame): [[]]
— (<class 'list'>)

Expectation (Return value list if processing data_sync twice after start of frame): result =
< [[11 (Lclass 'list'>)

State after processing data_sync twice after start of frame is correct (Content 1 and Type is <class 'int’>).

Result (State after processing data_sync twice after start of frame): 1 (<class 'int'>)

Expectation (State after processing data_sync twice after start of frame): result = 1 (<class
— 'int'>)

B.1.21 Frame processing - After state corruption
Description

The state of STP shall be set to IDLE, after an unknown state was recognised. The currently processed data shall be
processed again. An error shall be given to the logger.

Reason for the implementation

Robustness against wrong or corrupted data.

Testresult
This test was passed with the state:

Info Corrupting stp state and processing data.

62 /

Unittest for stringtools

Sending b':<te' to stp.
STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

Setting state of stp to 255.

Sending b':<te' to stp.

STP: unknown state (255) => adding value (3a) back to data again and changing state ->
— STP_STATE_IDLE

STP: Chunking "(2): 74 65" from buffer

STP: data sync (3a) received => changing state STP_STATE_IDLE -> STP_STATE_ESCAPE_1

STP: start pattern (3a 3c) received => changing state STP_STATE_ESCAPE_1 ->
— STP_STATE_STORE_DATA

Return value list if processing start of a frame after state had been corrupted is correct (Content [[]] and
Type is <class 'list'>).

Result (Return value list if processing start of a frame after state had been corrupted): [[
-~ 1 1 (<class 'list'>)

Expectation (Return value list if processing start of a frame after state had been
— corrupted): result = [[]] (<class 'list'>)

State after processing start of a frame after state had been corrupted is correct (Content 3 and Type is
<class 'int">).

Result (State after processing start of a frame after state had been corrupted): 3 (<class
— 'int‘>)

Expectation (State after processing start of a frame after state had been corrupted): result
— = 3 (<class 'int'>)

Buffer size after corrupting stp state is correct (Content 2 and Type is <class 'int’>).

Result (Buffer size after corrupting stp state): 2 (<class 'int'>)

Expectation (Buffer size after corrupting stp state): result = 2 (<class 'int'>)

C Test-Coverage

C.1 stringtools

The line coverage for stringtools was 100.0%
The branch coverage for stringtools was 97.7%

63/ [72]

1

2

3

o

43

44

45

46

47

48

49

Unittest for stringtools

C.1.1 stringtools.__init__.py

The line coverage for stringtools.__init__.py was 100.0%
The branch coverage for stringtools.__init__.py was 97.7%
#!/usr/bin/env python

—x— coding: utf—8 —*—

#

nman

stringtools (Stringtools)

x Author:x
x Dirk Alders <sudo—dirk@mount—mockery.de>
**x Description :xx%
This Module supports functionality around string operations.
** Submodules :%x
:mod: " stringtools.csp’
:mod: " stringtools .stp’

:func: gzip-compress
:func:® gzip_extract’

L L A

:func:® hexlify ®
sk Unittest 1%x*

See also the :download: unittest <stringtools/_testresults_/unittest.pdf>" documentation.

; x* Module Documentation:x*

o

from stringtools import stp
from stringtools import csp
__DEPENDENCIES__ = []

import fractions
import gzip
import logging
import time
import sys
if sys.version_info < (3, 0):
from cStringlO import StringlO

try:
from config import APP.NAME as ROOT_LOGGER_.NAME
except ImportError:
ROOT_LOGGER.NAME = 'root'
logger = logging.getLogger (ROOT_LOGGER.NAME) . getChild (-—name__)

__DESCRIPTION__. = """ The Module {\\tt %s} is designed to support functionality for strings (e.g.
transfer strings via a bytestream, compressing, extracting, ...).
For more Information read the sphinx documentation.””” % __name__.replace('_", '"_")

TR

""" The Module Description

5 _INTERPRETER__ = (2, 3)

IRIRD

"""The Tested Interpreter—Versions

64/

Unittest for stringtools

s6 --all__ = ['gzip-compress',

57 'gzip-extract',

58 "hexlify ',

59 'csp',

60 "stp']

61

62

63 def physical_value_repr(value, unit="'"):
64 prefix = {

65 —4: 'p',

66 —-3: 'n',

67 —2: 'u',

68 —1: 'm',

69 0: '"',

70 1. k',

71 2: 'M',

72 3: 'G',

73 4: 'T',

74 5: 'P',

75 }

76 u=20

7 while u > —4 and u < 5 and (value >= 1000. or value < 1.) and value != O0:
78 if value >= 1:

79 u+4=1

80 value /= 1000.

81 else:

82 u—=1

83 value = 1000.

84 if u= 0:

85 ext = !

86 else:

87 ext = prefix[u]

88 #

89 if value < 100.:

9 value = '"%.2f"' % (value)
o1 else:

B value = '%.1f' % (value)
03 while value.find('.') > —1 and (value.endswith('0') or value.endswith('."')):
94 value = value[: —1]

95 return value 4+ ext + unit

96

s def time_repr(seconds):

99 days = seconds / (24 * 60 x 60)

100 seconds = seconds % (24 % 60 = 60)

101 if seconds >= 60 * 60:

102 rv. = time.strftime ('YH:%M:%S"', time.gmtime(seconds))
103 else:

104 rv = time.strftime ('Y%M:%S', time.gmtime(seconds))
105 if days >= 1:

106 rv. = '%dD %s' % (days, rv)

107 if rv.endswith(' 00:00"'):

108 rv. = rv[:—6]

109 return rv

110
111

112 def frac_repr(value):

113 f = fractions.Fraction(value).limit_.denominator ()
114 return '%s/%s' % (f.numerator, f.denominator)

115

116

117 def gzip_compress(s, compresslevel=9):

65/ [72]

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

def

Unittest for stringtools

[IRTRT)

Method to compress a stream of bytes.

:param str s: The bytestream (string) to be compressed

:param int compresslevel: An optional compressionn level (default is 9)
:return: The compressed bytestream
irtype: str

xx Example 1% %

literalinclude :: ../ examples/gzip_compress.py

Will result to the following output:
literalinclude :: ../ examples/gzip_.compress.log

rv = None

t = time.time()

if sys.version_info >= (3, 0):

rv = gzip.compress(s, compresslevel)
else:
buf = StringlO ()
f = gzip.GzipFile(mode='wb', compresslevel=compresslevel , fileobj=buf)
try:
f.write(s)
finally:
f.close ()
rv = buf.getvalue ()
buf.close ()
if rv is not None:
logger.debug('GZIP: Finished to compress a string (compression_rate=%.3f,
=%.1fs)."', len(rv) / float(len(s)), time.time() — t)
return rv

gzip_extract(s):

"o

Method to extract data from a compress stream of bytes.

param str s:
The
str

The compressed bytestream (string) to be extracted

ireturn: extracted data

rtype:
*x Example :x %

literalinclude :: ../ examples/gzip_extract.py

Will result to the following output:
literalinclude :: ../ examples/gzip_extract.log

t = time.time()

rv. = None

if sys.version_info >= (3, 0):

rv = gzip.decompress(s)
else:
inbuffer = StringlO (s)
f = gzip.GzipFile(mode='rb', fileobj=inbuffer)
try:
rv = f.read ()
finally :

consumed_time

66 / [72]

Unittest for stringtools

178 f.close ()

179 inbuffer.close ()

180 if rv is not None:

181 logger.debug('GZIP: Finished to extract a string (compression_rate=%.3f,
=%.1fs). "', len(s) / float(len(rv)), time.time() — t)

182 return rv

183
184

w5 def hexlify(s):

186 """ Method to hexlify a string.

187

188 :param str s: A string including the bytes to be hexlified.
189 :returns: The hexlified string

190 crtype: str

191

192 xx Example %%

103

194 .. literalinclude :: ../examples/hexlify.py
195

196 Will result to the following output:

197

108 .. literalinclude:: ../examples/hexlify.log
199 e

200 rv. = '"(%d):"' % len(s)

201 for byte in s:

202 if sys.version_info >= (3, 0):

203 rv 4= ' %02x' % byte

204 else:

205 rv += ' %02x"' % ord(byte)

206 return rv

207

208

200 def linefeed_filter (s):

210 """ Method to change linefeed and carriage return to '\\\\n' and "\\\\r'
211

212 :param str s: A string including carriage return and/ or linefeed.

213 creturns: A string with converted carriage return and/ or linefeed.

214 crtype: str

215 e

216 if sys.version_info >= (3, 0):

217 return s.replace(b'\r', b'\\r').replace(b'\n', b'"\\n")

218 else:

219 return s.replace('\r', '"\\r').replace('"\n', "\\n')

C.1.2 stringtools.csp.py

The line coverage for stringtools.csp.py was 100.0%
The branch coverage for stringtools.csp.py was 97.7%
1 #!/usr/bin/env python
> # —x— coding: utf—8 —x—
3 #

5 csp (Carriage—Return seperation protocol)

6

7

s k% Author:xx

9

10 * Dirk Alders <sudo—dirk@mount—mockery.de>

11

consumed_time

67/ [72]

29

30

31

32

40

41

42

43

44

45

46

48

49

50

51

59

60

61

62

63

65

66

67

68

69

*x Description :%%

Unittest for stringtools

receive

hexlify (msg))

This module is a submodule of :mod: stringtools ™ and creates an frame to transmit and
messages via an serial interface.
Submodules:
x :class: stringtools.csp.csp’
x :func: stringtools.csp.build_frame"
import stringtools
import logging
import sys
try:
from config import APP.NAME as ROOT_LOGGER_NAME
except ImportError:
ROOT_LOGGER.NAME = 'root'
logger = logging.getLogger (ROOT_LOGGER.NAME) . getChild (-_name__)
DATA_SEPERATOR = b'\n'
class csp(object):
""" This class extracts messages from an "csp—stream”.
*x Example 1%
literalinclude :: ../ examples/csp.csp.py
Will result to the following output:
literalinclude :: ../ examples/csp.csp.log
LOG_PREFIX = 'CSP:'
def __init__(self, seperator=DATASEPERATOR):
self.__buffer__ =b''
self. __seperator__ = seperator
def process(self, data):
This processes a byte out of a "stp—stream”.
:param bytes data: A byte stream
creturns: A list of the extracted message(s)
crtype: list
if sys.version_info < (3, 0):
if type(data) is unicode:
raise TypeError
#
rv = (self.__buffer__ + data).split(self.__seperator__)
self. __buffer_._ = rv.pop()
if len(self.__buffer__) != 0:
logger.debug('%s Leaving data in buffer (to be processed next time): %s', self.
LOG_PREFIX, stringtools.hexlify(self.__buffer__))
for msg in rv:
logger.info('%s message identified — %s', self.LOG_PREFIX, stringtools.
return rv

68/ [72]

Unittest for stringtools

73

7« def build_frame (msg, seperator=DATA_SEPERATOR):

75 """ This Method builds an "csp—frame” to be transfered via a stream.
76

7 :param str data: A String (Bytes) to be framed

78 creturns: The "csp—framed” message to be sent

79 irtype: str

80

81 *% Example :® %

82

83 .. literalinclude:: ../examples/csp.build_frame.py
84

85 Will result to the following output:

86

87 .. literalinclude:: ../examples/csp.build_frame.log
88 e

89 if seperator in msg:

9 raise ValueError

o1 else:

92 return msg + seperator

C.1.3 stringtools.stp.py

The line coverage for stringtools.stp.py was 100.0%
The branch coverage for stringtools.stp.py was 97.7%
1 #!/usr/bin/env python
> # —%— coding: utf—8 —%—
3 #

5 stp (Serial transfer protocol)

*x Author :xx

10 % Dirk Alders <sudo—dirk@mount—mockery.de>

11

12 %k Description i

13

14 This module is a submodule of :mod: stringtools ™ and creates an serial frame to transmit and
receive messages via an serial interface.

16 **Submodules:x*

18 % :class: stringtools.stp.stp’
19 % :func: stringtools.stp.build_frame"

nn

2 import stringtools

2% import logging
25 import sys

27 try

28 from config import APP.NAME as ROOT_LOGGER_.NAME
20 except ImportError:

30 ROOT_LOGGER.NAME = 'root'

31 logger = logging.getLogger (ROOT_LOGGER.NAME) . getChild (-_name__)

69/ [72]

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

73

74

75

76

7

78

79

80

81

82

83

84

91

92

93

94

Unittest for stringtools

DATASYNC = b'\x3a'
""" The data sync byte
DATA_CLEAR_.BUFFER = b'\x3c'

""" The clear buffer byte ('"\\\\x3a\\\\x3c' —> start of message)”"”
DATA_VALID_MSG = b'\x3e'

""" The valid message byte ('\\\\x3a\\\\x3e' —> end of message)”"”
DATA_STORE_SYNC_VALUE = b'\x3d'

[TRTRT)

""" The store sync value byte ('\\\\x3a\\\\x3d' — "\\\\x3a' inside a message)

STP_STATE_IDLE = 0x00

"""ldle state definition (default)”"”

STP_STATE_ESCAPE_1 = 0x01

""" Escape 1 state definition ('\\\\x3a\\\\x3c' found)”"”
STP_STATE_ESCAPE_.2 = 0x02

""" Escape 2 state definition ('\\\\x3a' found inside a message)
STP.STATE_STORE_DATA = 0x03

non

class stp(object):
""" This class extracts messages from an

’ ,

"stp—stream”.

*x Example :®%

literalinclude :: ../ examples/stp.stp.py
Will result to the following output:
literalinclude :: ../ examples/stp.stp.log

[IRTRT)

LOG_PREFIX = 'STP:'

def __init__(self):
self.state = STP_.STATE_IDLE
self.__buffer__ =b''
self.__clear_buffer__()

def __clear_buffer__(self):
if len(self.__buffer__) > 0:

logger.warning('%s Chunking "%s"” from buffer', self.LOG_PREFIX,

self.__buffer__))
self.__buffer__ =b"'

def process(self, data):

noon

This processes a byte out of a "stp—stream”.

:param bytes data: A byte stream

Store data state definition (start of message found; data will be stored)

stringtools. hexlify (

:returns: The extracted message or None, if no message is identified yet

crtype: str
if type(data) is list:
raise TypeError
if sys.version_info <= (3, 0):
if type(data) is unicode:
raise TypeError

while len(data) > O0:
if sys.version_info >= (3, 0):
b = bytes([data[0]])
else:

70/ 7]

Unittest for stringtools

95 b = data[0]

9% data = data[1:]

97 #

98 if self.state = STP_STATELIDLE:

99 if b = DATASYNC:

100 self.state = STP.STATE_ESCAPE_1

101 logger.debug('%s data sync (%02x) received => changing state STP_STATE_IDLE
—> STP_STATE_ESCAPE_1', self.LOG_PREFIX, ord(b))

102 else:

103 logger.warning('%s no data sync (%02x) received => ignoring byte', self.
LOG_PREFIX, ord (b))

104 elif self.state =— STP_STATE_ESCAPE_1:

105 if b =— DATA_CLEAR_BUFFER:

106 logger.debug('%s start pattern (%02x %02x) received => changing state
STP_STATE_ESCAPE_1 —> STP_STATE.STORE.DATA', self.LOG_PREFIX, ord(DATASYNC), ord(b))

107 self.state = STP.STATE_.STORE_DATA

108 self.__clear_buffer__()

109 elif b !'= DATASYNC:

110 self.state = STP_.STATE.IDLE

111 logger.warning('%s no start pattern (%02x %02x) received => changing state
STP_STATE_ESCAPE.1 —> STP_STATE_IDLE', self.LOG_PREFIX, ord(DATASYNC), ord(b))
112 else:

113 logger.warning('%s 2nd data sync (%02x) received => keep state', self.
LOG_PREFIX, ord (b))

114 elif self.state =— STP_.STATE_STORE_DATA:

115 if b = DATASYNC:

116 self.state = STP.STATE_ESCAPE_2

117 logger.debug('%s data sync (%02x) received => changing state
STP_STATE_.STORE.DATA —> STP_STATE_ESCAPE_2', self.LOG_PREFIX, ord(b))

118 else:

119 self. __buffer__ 4= b

120 elif self.state =— STP_STATE_ESCAPE_2:

121 if b = DATA_CLEAR_BUFFER:

122 logger.warning('%s start pattern (%02x %02x) received => changing state
STP_.STATE_ESCAPE_2 —> STP_.STATE.STORE_.DATA', self.LOG_PREFIX, ord(DATASYNC), ord(b))

123 self.state = STP.STATE.STORE_DATA

124 self.__clear_buffer__()

125 elif b = DATA_VALID_MSG:

126 self.state = STP_.STATE_IDLE

127 logger.debug('%s end pattern (%02x %02x) received => storing message and
changing state STP.STATE_ESCAPE_.2 —> STP_.STATE_IDLE', self.LOG_PREFIX, ord(DATASYNC), ord(b)
)

128 rv.append(self.__buffer__)

129 self. __buffer_._ =b'!

130 elif b = DATA_STORE_SYNC_VALUE:

131 self.state = STP.STATE.STORE_DATA

132 logger.debug('%s store sync pattern (%02x %02x) received => changing state
STP_STATE_ESCAPE.2 —> STP_.STATE.STORE_DATA', self.LOG_PREFIX, ord(DATASYNC), ord(b))

133 self. __buffer__ += DATASYNC

134 elif b =— DATASYNC:

135 self.state = STP.STATE_ESCAPE_1

136 logger.warning('%s second data sync (%02x) received => changing state
STP_STATE_ESCAPE.2 —> STP_STATE_ESCAPE_1', self.LOG_PREFIX, ord(b))

137 self.__clear_buffer__()

138 else:

139 self.state = STP_.STATE.IDLE

140 logger.warning('%s data (%02x) received => changing state STP_.STATE_ESCAPE_2
—> STP_STATE_IDLE', self.LOG_PREFIX, ord(b))

141 self.__clear_buffer__()

142 else:

71/

143

144

145

146

147

148

149

150

151

152

153

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

for

Unittest for stringtools

logger.error('%s unknown state (%s) => adding value (%02x) back to data again and
changing state —> STP.STATE_IDLE', self.LOG_PREFIX, repr(self.state), ord(b))

se
se
da
msg in
logger

return rv

If .state = STP_STATE_IDLE

If.__clear_buffer__()

ta = b 4+ data

rv:

.info('%s message identified — %s', self.LOG_PREFIX,

def build_frame(data):

""" This Method builds an "stp—frame” to be transfered via a stream.

sparam

str dat

:returns: The

Irtype:

str

**x Example :® %

a: A String (Bytes) to be framed
"stp—framed” message to be sent

literalinclude :: ../ examples/stp.build_frame.py
Will result to the following output:
literalinclude :: ../ examples/stp.build_frame.log

oo

rv. = DATASYNC + DATA_CLEAR_BUFFER

for byte in da

ta:

if sys.version_info >= (3, 0):

byte =

bytes ([byte])

if byte = DATASYNC:

rv +=

else:

rv +=

DATASYNC + DATA_STORE_SYNC_VALUE

byte

rv += DATASYNC 4 DATA_VALID_MSG

return

rv

stringtools . hexlify (msg))

72/

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 2.7.18 (final)
	Test-Statistic for testrun with python 3.8.5 (final)
	Coverage Statistic

	Tested Requirements
	Stream Definition
	Physical representation
	Time representation
	Fraction representation

	Human readable value representations
	Stream to Human readable String
	Hexadecimal Values
	Number of Bytes
	CRLF-Filter

	Stream Compression
	Compress
	Extract

	Carriagereturn Seperation Protocol (CSP)
	Frame creation
	Frame creation error
	Frame processing
	Frame processing - Input data type error

	Serial Transfer Protocol (STP)
	Frame creation
	Frame creation - Start pattern and end pattern inside a message
	Frame processing
	Frame processing - Input data type error
	Frame processing - Start pattern and end pattern inside a message
	Frame processing - Data before the start pattern
	Frame processing - Incorrect start patterns
	Frame processing - Incorrect end pattern
	Frame processing - After state corruption

	Trace for testrun with python 2.7.18 (final)
	Tests with status Info (21)
	Physical representation
	Time representation
	Fraction representation
	Hexadecimal Values
	Number of Bytes
	CRLF-Filter
	Compress
	Extract
	Frame creation
	Frame creation error
	Frame processing
	Frame processing - Input data type error
	Frame creation
	Frame creation - Start pattern and end pattern inside a message
	Frame processing
	Frame processing - Input data type error
	Frame processing - Start pattern and end pattern inside a message
	Frame processing - Data before the start pattern
	Frame processing - Incorrect start patterns
	Frame processing - Incorrect end pattern
	Frame processing - After state corruption

	Trace for testrun with python 3.8.5 (final)
	Tests with status Info (21)
	Physical representation
	Time representation
	Fraction representation
	Hexadecimal Values
	Number of Bytes
	CRLF-Filter
	Compress
	Extract
	Frame creation
	Frame creation error
	Frame processing
	Frame processing - Input data type error
	Frame creation
	Frame creation - Start pattern and end pattern inside a message
	Frame processing
	Frame processing - Input data type error
	Frame processing - Start pattern and end pattern inside a message
	Frame processing - Data before the start pattern
	Frame processing - Incorrect start patterns
	Frame processing - Incorrect end pattern
	Frame processing - After state corruption

	Test-Coverage
	 stringtools
	 stringtools.__init__.py
	 stringtools.csp.py
	 stringtools.stp.py

