Unittest for task

August 15, 2025

Unittest for task

Contents
(1__Test Information 3
[LL1 Test Candidate Information| 3
1.2 Unittest Informationl 3
IL1.3 Test System Information| 3
[2_Statistid 3
[2.1 Test-Statistic for testrun with python 3.13.5 (final)l 3
2.2 Coverage Statistic] e 4
3 | 5
[3.1 Summary for testrun with python 3.13.5 (final)| 5
3.1.1 pylibs.task.crontab: Test cronjob | 5
13.1.2 pylibs.task.crontab: Test crontab| 6
13.1.3 pylibs.task.delayed: Test parallel processing and timing for a delayed execution| 6
13.1.4 pylibs.task.periodic: Test periodic execution | 7
13.1.5 pylibs.task.queue: Test clean_queue method | 7
13.1.6 pylibs.task.queue: Test gsize and queue execution order by priority | 8
13.1.7 pylibs.task.queue: Test stop method | 8
13.1.8 pylibs.task.threaded_queue: Test enqueue while queue isrunning | 9
13.1.9 pylibs.task.threaded_queue: Test gsize and queue execution order by priority | 9
[A" Trace for testrun with python 3.13.5 (final)| 10
[A.1 Tests with status Info (9) 10
IA.1.1 pylibs.task.delayed: Test parallel processing and timing for a delayed execution| 10
IA.1.2 pylibs.task.periodic: Test periodic execution | 11
IA.1.3 pylibs.task.queue: Test gsize and queue execution order by priority | 13
IA.1.4 pylibs.task.queue: Test stop method | 14
IA.1.5 pylibs.task.queue: Test clean_queue method | 16
IA.1.6 pylibs.task.threaded_queue: Test gsize and queue execution order by priority | 17
IA.1.7 pylibs.task.threaded_queue: Test enqueue while queue is running| 19
|A.1.8 pylibs.task.crontab: Test cronjob | 20
IA.1.9 pylibs.task.crontab: Test crontab| 24

Unittest for task

[B_Test-Coverage] 24
BT _TaskK . . . o o oo 24
IB.1.1 task.__init__.py | e 24

2/ 3

Unittest for task

1 Test Information

1.1 Test Candidate Information

The Module task is designed to help with task issues like periodic tasks, delayed tasks, queues, threaded queues and

crontabs. For more Information read the documentation.

Library Information

Name task

State Released

Supported Interpreters python3

Version dfaed91376075c069c9e784b77342f24

Dependencies

1.2 Unittest Information

Unittest Information

Version 0de92deleb874ac24955dd6f67631bee
Testruns with python 3.13.5 (final)

1.3 Test System Information

System Information

Architecture 64bit

Distribution Debian GNU/Linux 13 trixie

Hostname ahorn

Kernel 6.12.38+deb13-amd64 (#1 SMP PREEMPT_DYNAMIC Debian 6.12.38-1 (2025-07-16))
Machine x86_64

Path /home/dirk /work /unittest_collection /task

System Linux

Username dirk

2 Statistic

2.1
Number of tests 9
Number of successfull tests 9
Number of possibly failed tests 0
Number of failed tests 0
Executionlevel Full Test (all defined tests)
Time consumption 217.022s

3/

Unittest for task

2.2 Coverage Statistic

Module- or Filename Line-Coverage Branch-Coverage

task 98.9% 98.0%
task.__init__.py 98.9%

4 /32

Unittest for task

3.1 Summary for testrun with python 3.13.5 (final)

3.1.1 pylibs.task.crontab: Test cronjob

Testresult

This test was passed with the state:

. See also full trace in section [A.1.8]

Testrun:

Caller:

Start-Time:
Finished-Time:
Time-Consumption

python 3.13.5 (final)

/home/dirk/work /unittest_collection /task/unittest/src/report/__init__.py (331)

2025-08-15 21:03:32,306
2025-08-15 21:03:32,321
0.015s

Testsummary:

Info

Info

Info

Initialising cronjob with minute: [23, 45]; hour: [12, 17]; day: 25; month: any; day_of_week:

any.
Return value for minute: 23; hour: 17; day: 25;

True and Type is <class 'bool'>).
Return value for minute: 45; hour: 12; day: 25;

True and Type is <class 'bool'>).
Return value for minute: 22; hour: 17; day: 25;

False and Type is <class 'bool">).
Return value for minute: 22; hour: 17; day: 25;

False and Type is <class 'bool'>).
Return value for minute: 45; hour: 14; day: 25;

False and Type is <class 'bool>).
Return value for minute: 23; hour: 17; day: 24;

False and Type is <class 'bool>).

month: 02, day_of_week
month: 03, day_of_week
month: 02, day_of_week
month: 02, day_of_week
month: 02, day_of_week

month: 02, day_of_week

: 1is correct (Content
: 5 is correct (Content
: 1is correct (Content
. 3is correct (Content
: 1is correct (Content

: 1is correct (Content

Storing reminder for execution (minute: 23, hour: 17, day: 25, month: 2, day_of_week: 1).

Return value for minute: 23; hour: 17; day: 25;

False and Type is <class 'bool’>).
Return value for minute: 45; hour: 12; day: 25;

True and Type is <class 'bool'>).
Return value for minute: 22; hour: 17; day: 25;

False and Type is <class 'bool’>).
Return value for minute: 22; hour: 17; day: 25;

False and Type is <class 'bool’>).
Return value for minute: 45; hour: 14; day: 25;

False and Type is <class 'bool’>).
Return value for minute: 23; hour: 17; day: 24;

False and Type is <class 'bool’>).

month: 02, day_of_week
month: 03, day_of_week
month: 02, day_of_week
month: 02, day_of_week
month: 02, day_of_week

month: 02, day_of_week

: 1is correct (Content
: 5 is correct (Content
: 1is correct (Content
: 3is correct (Content
: 1is correct (Content

: 1is correct (Content

Resetting trigger condition with minute: 22; hour: any; day: [12, 17, 25], month: 2.

Return value for minute: 23; hour: 17; day: 25; month: 02, day_of_week: 1 is correct (Content

False and Type is <class 'bool’>).

Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5 is correct (Content

False and Type is <class 'bool’>).

Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1 is correct (Content

True and Type is <class 'bool’>).

5/

Unittest for task

Return value for minute: 22; hour: 17; day: 25; month: 05, day_of week: 3 is correct (Content

False and Type is <class 'bool’>).
Return value for minute: 45; hour: 14; day: 25; month: 02, day_of week: 1 is correct (Content

False and Type is <class 'bool’>).
Return value for minute: 23; hour: 17; day: 24; month: 02, day_of week: 1 is correct (Content

False and Type is <class 'bool’>).

Info Resetting trigger condition (again).

1st run - execution not needed is correct (Content False and Type is <class 'bool’>).
2nd run - execution not needed is correct (Content False and Type is <class "bool">).
3rd run - execution needed is correct (Content True and Type is <class 'bool">).
4th run - execution needed is correct (Content True and Type is <class 'bool'>).
5th run - execution not needed is correct (Content False and Type is <class 'bool'>).
6th run - execution not needed is correct (Content False and Type is <class 'bool">).

3.1.2 pylibs.task.crontab: Test crontab

Testresult

This test was passed with the state:

. See also full trace in section [A.1.9]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work /unittest_collection /task/unittest/src/report/__init__.py (331)

Start-Time: 2025-08-15 21:03:32,322

Finished-Time: 2025-08-15 21:07:02,327

Time-Consumption 210.005s

Testsummary:

Info Creating Crontab with callback execution in +1 and +3 minutes.
Number of submitted values is correct (Content 2 and Type is <class 'int’>).
Timing of crontasks: Valueaccuracy and number of submitted values is correct. See detailed
log for more information.

3.1.3 pylibs.task.delayed: Test parallel processing and timing for a delayed execution

Testresult

This test was passed with the state:

. See also full trace in section [A.1.1]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /task/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 21:03:25,003

Finished-Time: 2025-08-15 21:03:25,516

Time-Consumption 0.512s

Testsummary:

Info Added a delayed task for execution in 0.250s.

Execution of task and delayed task (identified by a submitted sequence number): Values and

number of submitted values is correct. See detailed log for more information.
Time consumption is correct (Content 0.2503364086151123 in [0.2465 ... 0.2545] and Type is

<class 'float’>).

6/ 32

Info

Info

Unittest for task

Added a delayed task for execution in 0.010s.
Execution of task and delayed task (identified by a submitted sequence number): Values and

number of submitted values is correct. See detailed log for more information.
Time consumption is correct (Content 0.010375022888183594 in [0.008900000000000002 ...

0.0121] and Type is <class 'float'>).
Added a delayed task for execution in 0.005s.

Execution of task and delayed task (identified by a submitted sequence number): Values and

number of submitted values is correct. See detailed log for more information.
Time consumption is correct (Content 0.005130767822265625 in [0.00395 ... 0.00705] and

Type is <class 'float’>).

3.1.4 pylibs.task.periodic: Test periodic execution

Testresult
This test was passed with the state: . See also full trace in section [A.1.2]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /task/unittest/src/report/__init__.py (331)

Start-Time: 2025-08-15 21:03:25,516

Finished-Time: 2025-08-15 21:03:28,061

Time-Consumption 2.545s

Testsummary:

Info Running a periodic task for 10 cycles with a cycletime of 0.25s
Minimum cycle time is correct (Content 0.2503952980041504 in [0.2465 ... 0.2545] and Type
is <class 'float’>).
Mean cycle time is correct (Content 0.25099709298875594 in [0.2465 ... 0.2545] and Type is
<class 'float’>).
Maximum cycle time is correct (Content 0.2532165050506592 in [0.2465 ... 0.2565] and Type
is <class 'float’>).

Info Running a periodic task for 10 cycles with a cycletime of 0.01s
Minimum cycle time is correct (Content 0.010394811630249023 in [0.008900000000000002 ...
0.0121] and Type is <class 'float'>).
Mean cycle time is correct (Content 0.010824150509304471 in [0.008900000000000002 ...
0.0121] and Type is <class 'float'>).
Maximum cycle time is correct (Content 0.012276411056518555 in [0.008900000000000002 ...
0.0141] and Type is <class 'float'>).

Info Running a periodic task for 10 cycles with a cycletime of 0.005s

Minimum cycle time is correct (Content 0.005440473556518555 in [0.00395 ... 0.00705] and

Type is <class 'float’>).
Mean cycle time is correct (Content 0.005537403954399956 in [0.00395 ... 0.00705] and Type

is <class 'float’>).
Maximum cycle time is correct (Content 0.0055887699127197266 in [0.00395

0.009049999999999999] and Type is <class 'float’>).

3.1.5 pylibs.task.queue: Test clean_queue method

Testresult

This test was passed with the state: . See also full trace in section [A.1.5]

7/

Unittest for task

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work /unittest_collection /task/unittest/src/report/__init__.py (331)

Start-Time: 2025-08-15 21:03:28,276

Finished-Time: 2025-08-15 21:03:28,282

Time-Consumption 0.006s

Testsummary:

Info Enqueued 6 tasks (stop request within 3rd task).
Size of Queue before execution is correct (Content 6 and Type is <class 'int’>).
Size of Queue after execution is correct (Content 3 and Type is <class 'int'>).
Queue execution (identified by a submitted sequence number): Values and number of submitted
values is correct. See detailed log for more information.

Info Cleaning Queue.
Size of Queue after cleaning queue is correct (Content 0 and Type is <class 'int’>).

3.1.6 pylibs.task.queue: Test gsize and queue execution order by priority

Testresult

This test was passed with the state:

. See also full trace in section [A.1.3]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /task/unittest/src/report/__init__.py (331)

Start-Time: 2025-08-15 21:03:28,061

Finished-Time: 2025-08-15 21:03:28,168

Time-Consumption 0.106s

Testsummary:

Info Enqueued 6 unordered tasks.
Size of Queue before execution is correct (Content 6 and Type is <class 'int'>).
Size of Queue after execution is correct (Content 0 and Type is <class 'int'>).
Queue execution (identified by a submitted sequence number): Values and number of submitted
values is correct. See detailed log for more information.

3.1.7 pylibs.task.queue: Test stop method

Testresult

This test was passed with the state:

. See also full trace in section [A.1.4]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work /unittest_collection /task/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 21:03:28,168

Finished-Time: 2025-08-15 21:03:28,275

Time-Consumption 0.107s

Testsummary:

Info Enqueued 6 tasks (stop request within 4th task).

Size of Queue before 1st execution is correct (Content 6 and Type is <class 'int'>).

8/ 32

Unittest for task

Size of Queue after 1st execution is correct (Content 2 and Type is <class 'int'>).
Queue execution (1st part; identified by a submitted sequence number): Values and number of

submitted values is correct. See detailed log for more information.
Size of Queue after 2nd execution is correct (Content 0 and Type is <class 'int’>).

Queue execution (2nd part; identified by a submitted sequence number): Values and number
of submitted values is correct. See detailed log for more information.

3.1.8

Testresult

This test was passed with the state:

pylibs.task.threaded_queue: Test enqueue while queue is running

. See also full trace in section [A.1.7]

Testrun: python 3.13.5 (final)

Caller: /home/dirk/work/unittest_collection /task/unittest/src/report/__init__.py (331)

Start-Time: 2025-08-15 21:03:31,401

Finished-Time: 2025-08-15 21:03:32,009

Time-Consumption 0.608s

Testsummary:
Size of Queue before execution is correct (Content 0 and Type is <class 'int’>).

Info Enqueued 2 tasks.
Size of Queue after execution is correct (Content 0 and Type is <class 'int'>).
Queue execution (identified by a submitted sequence number): Values and number of submitted
values is correct. See detailed log for more information.

3.1.9 pylibs.task.threaded_queue: Test gsize and queue execution order by priority

Testresult

This test was passed with the state:

. See also full trace in section [A.1.6]

Testrun: python 3.13.5 (final)
Caller: /home/dirk/work/unittest_collection /task/unittest/src/report/__init__.py (331)
Start-Time: 2025-08-15 21:03:28,283
Finished-Time: 2025-08-15 21:03:31,400
Time-Consumption 3.118s
Testsummary:
Info Enqueued 6 unordered tasks.
Size of Queue before execution is correct (Content 7 and Type is <class 'int’>).
Info Executing Queue, till Queue is empty..
Size of Queue after execution is correct (Content 0 and Type is <class 'int'>).
Queue execution (identified by a submitted sequence number): Values and number of submitted
values is correct. See detailed log for more information.
Info Setting expire flag and enqueued again 2 tasks.
Size of Queue before restarting queue is correct (Content 2 and Type is <class 'int'>).
Info Executing Queue, till Queue is empty..

Queue execution (rerun; identified by a submitted sequence number): Values and number of
submitted values is correct. See detailed log for more information.

9/

Unittest for task

A Trace for testrun with python 3.13.5 (final)

A.1 Tests with status Info (9)
A.1.1 pylibs.task.delayed: Test parallel processing and timing for a delayed execution

Testresult
This test was passed with the state:

Info Added a delayed task for execution in 0.250s.

Execution of task and delayed task (identified by a submitted sequence number): Values and number of

submitted values is correct. See detailed log for more information.

Result (Execution of task and delayed task (identified by a submitted sequence number)): [1,
< 2] (<class 'list'>)

Expectation (Execution of task and delayed task (identified by a submitted sequence number)):
— result = [1, 2] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)
Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).
Result (Submitted value number 2): 2 (<class 'int'>)

Expectation (Submitted value number 2): result = 2 (<class 'int'>)

Submitted value number 2 is correct (Content 2 and Type is <class 'int'>).

Time consumption is correct (Content 0.2503364086151123 in [0.2465 ... 0.2545] and Type is <class
"float'>).

Result (Time consumption): 0.2503364086151123 (<class 'float'>)

Expectation (Time consumption): 0.2465 <= result <= 0.2545

Info Added a delayed task for execution in 0.010s.

Execution of task and delayed task (identified by a submitted sequence number): Values and number of
submitted values is correct. See detailed log for more information.

Result (Execution of task and delayed task (identified by a submitted sequence number)): [1,
— 2] (<class 'list'>)

Expectation (Execution of task and delayed task (identified by a submitted sequence number)):
— result = [1, 2] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)
Expectation (Submitted value number 1): result = 1 (<class 'int'>)
Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 2): 2 (<class 'int'>)

10

Unittest for task

Expectation (Submitted value number 2): result = 2 (<class 'int'>)

Submitted value number 2 is correct (Content 2 and Type is <class 'int'>).

Time consumption is correct (Content 0.010375022888183594 in [0.008900000000000002 ... 0.0121] and
Type is <class 'float'>).

Result (Time consumption): 0.010375022888183594 (<class 'float'>)
Expectation (Time consumption): 0.008900000000000002 <= result <= 0.0121

Info Added a delayed task for execution in 0.005s.

Execution of task and delayed task (identified by a submitted sequence number): Values and number of
submitted values is correct. See detailed log for more information.

Result (Execution of task and delayed task (identified by a submitted sequence number)): [1,
< 2] (<class 'list'>)

Expectation (Execution of task and delayed task (identified by a submitted sequence number)):
— result = [1, 2] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 2): 2 (<class 'int'>)

Expectation (Submitted value number 2): result = 2 (<class 'int'>)

Submitted value number 2 is correct (Content 2 and Type is <class 'int'>).

Time consumption is correct (Content 0.005130767822265625 in [0.00395 ... 0.00705] and Type is <class
'float'>).

Result (Time consumption): 0.005130767822265625 (<class 'float'>)
Expectation (Time consumption): 0.00395 <= result <= 0.00705

A.1.2 pylibs.task.periodic: Test periodic execution

Testresult
This test was passed with the state:

Info Running a periodic task for 10 cycles with a cycletime of 0.25s

Task execution number at 1755284605.517322
at 1755284605.768132
at 1755284606.018527

1
Task execution number 2
3

Task execution number 4 at 1755284606.269294
5
6
7

Task execution number

at 1755284606.519991
at 1755284606.770860
at 1755284607.021444

Task execution number
Task execution number

Task execution number

11 /2]

Unittest for task

Task execution number 8 at 1755284607.272279
Task execution number 9 at 1755284607.523079
Task execution number 10 at 1755284607 .776295

Minimum cycle time is correct (Content 0.2503952980041504 in [0.2465 ... 0.2545] and Type is <class
'float'>).

Result (Minimum cycle time): 0.2503952980041504 (<class 'float'>)
Expectation (Minimum cycle time): 0.2465 <= result <= 0.2545

Mean cycle time is correct (Content 0.25099709298875594 in [0.2465 ... 0.2545] and Type is <class
'float'>).

Result (Mean cycle time): 0.25099709298875594 (<class 'float'>)
Expectation (Mean cycle time): 0.2465 <= result <= 0.2545

Maximum cycle time is correct (Content 0.2532165050506592 in [0.2465 ... 0.2565] and Type is <class
"float'>).

Result (Maximum cycle time): 0.2532165050506592 (<class 'float'>)

Expectation (Maximum cycle time): 0.2465 <= result <= 0.2565

Info Running a periodic task for 10 cycles with a cycletime of 0.01s

at 1755284607 .826881
at 1755284607 .837669
at 1755284607 .848182
Task execution number 4 at 1755284607 .860459

Task execution number 1
2
3
4
Task execution number 5 at 1755284607.871138
6
7
8
9

Task execution number

Task execution number

at 1755284607 .882188
at 1755284607.892791
at 1755284607.903185
at 1755284607.913738

Task execution number
Task execution number
Task execution number
Task execution number

Task execution number 10 at 1755284607 .924298

Minimum cycle time is correct (Content 0.010394811630249023 in [0.008900000000000002 ... 0.0121]
and Type is <class 'float">).

Result (Minimum cycle time): 0.010394811630249023 (<class 'float'>)
Expectation (Minimum cycle time): 0.008900000000000002 <= result <= 0.0121

Mean cycle time is correct (Content 0.010824150509304471 in [0.008900000000000002 ... 0.0121] and
Type is <class 'float’>).

Result (Mean cycle time): 0.010824150509304471 (<class 'float'>)
Expectation (Mean cycle time): 0.008900000000000002 <= result <= 0.0121

12 /B2

Unittest for task

Maximum cycle time is correct (Content 0.012276411056518555 in [0.008900000000000002 ... 0.0141]
and Type is <class 'float">).

Result (Maximum cycle time): 0.012276411056518555 (<class 'float'>)
Expectation (Maximum cycle time): 0.008900000000000002 <= result <= 0.0141

Info Running a periodic task for 10 cycles with a cycletime of 0.005s

at 1755284607 .949154
at 1755284607 .954714
at 1755284607 .960250
at 1755284607 .965772
at 1755284607.971321
at 1755284607.976910
at 1755284607 .982350
at 1755284607 .987925
Task execution number at 1755284607 .993436
Task execution number 10 at 1755284607 .998991

Task execution number
Task execution number
Task execution number
Task execution number
Task execution number
Task execution number
Task execution number

Task execution number

© 00 N O O B W N

Minimum cycle time is correct (Content 0.005440473556518555 in [0.00395 ... 0.00705] and Type is
<class 'float’>).

Result (Minimum cycle time): 0.005440473556518555 (<class 'float'>)
Expectation (Minimum cycle time): 0.00395 <= result <= 0.00705

Mean cycle time is correct (Content 0.005537403954399956 in [0.00395 ... 0.00705] and Type is <class
'float’>).

Result (Mean cycle time): 0.005537403954399956 (<class 'float'>)
Expectation (Mean cycle time): 0.00395 <= result <= 0.00705

Maximum cycle time is correct (Content 0.0055887699127197266 in [0.00395 ... 0.009049999999999999]
and Type is <class 'float'>).

Result (Maximum cycle time): 0.0055887699127197266 (<class 'float'>)
Expectation (Maximum cycle time): 0.00395 <= result <= 0.009049999999999999

A.1.3 pylibs.task.queue: Test gsize and queue execution order by priority

Testresult
This test was passed with the state:

Info Enqueued 6 unordered tasks.

Size of Queue before execution is correct (Content 6 and Type is <class 'int’>).

Result (Size of Queue before execution): 6 (<class 'int'>)

13 /32

Unittest for task

Expectation (Size of Queue before execution): result = 6 (<class 'int'>)

Size of Queue after execution is correct (Content 0 and Type is <class 'int’>).

Result (Size of Queue after execution): 0 (<class 'int'>)

Expectation (Size of Queue after execution): result = 0 (<class 'int'>)

Queue execution (identified by a submitted sequence number): Values and number of submitted values

is correct. See detailed log for more information.

Result (Queue execution (identified by a submitted sequence number)):

— (<class 'list'>)

Expectation (Queue execution (identified by a submitted sequence number)): result

— 5, 6, 71 (Kclass 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)
Expectation (Submitted value number 1): result = 1 (<class
Submitted value number 1 is correct (Content 1 and Type is
Result (Submitted value number 2): 2 (<class 'int'>)
Expectation (Submitted value number 2): result = 2 (<class
Submitted value number 2 is correct (Content 2 and Type is
Result (Submitted value number 3): 3 (<class 'int'>)
Expectation (Submitted value number 3): result = 3 (<class
Submitted value number 3 is correct (Content 3 and Type is
Result (Submitted value number 4): 5 (<class 'int'>)
Expectation (Submitted value number 4): result = 5 (<class
Submitted value number 4 is correct (Content 5 and Type is
Result (Submitted value number 5): 6 (<class 'int'>)
Expectation (Submitted value number 5): result = 6 (<class
Submitted value number 5 is correct (Content 6 and Type is
Result (Submitted value number 6): 7 (<class 'int'>)
Expectation (Submitted value number 6): result = 7 (<class

Submitted value number 6 is correct (Content 7 and Type is

A.1.4 pylibs.task.queue: Test stop method

Testresult
This test was passed with the state:

'int'>)

<class 'int'>).

'int'>)

<class 'int'>).

'int'>)

<class 'int'>).

'int'>)

<class 'int'>).

'int'>)

<class 'int'>).

'int'>)

<class 'int'>).

[1, 2, 3,5,86, 7]

[1) 2) 3’

Info Enqueued 6 tasks (stop request within 4th task).

Size of Queue before 1st execution is correct (Content 6 and Type is <class 'int'>).

Result (Size of Queue before 1st execution): 6 (<class 'int'>)

Expectation (Size of Queue before 1st execution): result =

6 (<class 'int'>)

14 / 32

Unittest for task

Size of Queue after 1st execution is correct (Content 2 and Type is <class 'int'>).

Result (Size of Queue after 1st execution): 2 (<class 'int'>)

Expectation (Size of Queue after 1st execution): result = 2 (<class 'int'>)

Queue execution (1st part; identified by a submitted sequence number): Values and number of submitted
values is correct. See detailed log for more information.

Result (Queue execution (1st part; identified by a submitted sequence number)): [1, 2, 3, 5]
< (<class 'list'>)

Expectation (Queue execution (1st part; identified by a submitted sequence number)): result =
~ [1, 2, 3, 5] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)
Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).
Result (Submitted value number 2): 2 (<class 'int'>)

Expectation (Submitted value number 2): result = 2 (<class 'int'>)
Submitted value number 2 is correct (Content 2 and Type is <class 'int'>).
Result (Submitted value number 3): 3 (<class 'int'>)

Expectation (Submitted value number 3): result = 3 (<class 'int'>)
Submitted value number 3 is correct (Content 3 and Type is <class 'int'>).
Result (Submitted value number 4): 5 (<class 'int'>)

Expectation (Submitted value number 4): result = 5 (<class 'int'>)

Submitted value number 4 is correct (Content 5 and Type is <class 'int'>).

Size of Queue after 2nd execution is correct (Content 0 and Type is <class 'int'>).

Result (Size of Queue after 2nd execution): 0 (<class 'int'>)

Expectation (Size of Queue after 2nd execution): result = 0 (<class 'int'>)

Queue execution (2nd part; identified by a submitted sequence number): Values and number of submitted
values is correct. See detailed log for more information.

Result (Queue execution (2nd part; identified by a submitted sequence number)): [6, 7]
< (<class 'list'>)

Expectation (Queue execution (2nd part; identified by a submitted sequence number)): result =
—~ [6, 71 (Kclass 'list'>)

Result (Submitted value number 1): 6 (<class 'int'>)

Expectation (Submitted value number 1): result = 6 (<class 'int'>)

Submitted value number 1 is correct (Content 6 and Type is <class 'int'>).

Result (Submitted value number 2): 7 (<class 'int'>)

Expectation (Submitted value number 2): result = 7 (<class 'int'>)

Submitted value number 2 is correct (Content 7 and Type is <class 'int'>).

15 /32

Unittest for task

A.1.5 pylibs.task.queue: Test clean_queue method

Testresult
This test was passed with the state:

Info Enqueued 6 tasks (stop request within 3rd task).

Size of Queue before execution is correct (Content 6 and Type is <class 'int'>).

Result (Size of Queue before execution): 6 (<class 'int'>)

Expectation (Size of Queue before execution): result = 6 (<class 'int'>)

Size of Queue after execution is correct (Content 3 and Type is <class 'int’>).

Result (Size of Queue after execution): 3 (<class 'int'>)

Expectation (Size of Queue after execution): result = 3 (<class 'int'>)

Queue execution (identified by a submitted sequence number): Values and number of submitted values

is correct. See detailed log for more information.

Result (Queue execution (identified by a submitted sequence number)): [1, 2, 3] (<class
- 'list'>)

Expectation (Queue execution (identified by a submitted sequence number)): result = [1, 2, 3
—] (Kclass 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 2): 2 (<class 'int'>)

Expectation (Submitted value number 2): result = 2 (<class 'int'>)

Submitted value number 2 is correct (Content 2 and Type is <class 'int'>).

Result (Submitted value number 3): 3 (<class 'int'>)

Expectation (Submitted value number 3): result = 3 (<class 'int'>)

Submitted value number 3 is correct (Content 3 and Type is <class 'int'>).

Info Cleaning Queue.

Size of Queue after cleaning queue is correct (Content 0 and Type is <class 'int'>).

Result (Size of Queue after cleaning queue): 0 (<class 'int'>)

Expectation (Size of Queue after cleaning queue): result = 0 (<class 'int'>)

16 /32

Unittest for task

A.1.6 pylibs.task.threaded_queue: Test gsize and queue execution order by priority

Testresult
This test was passed with the state:

Info Enqueued 6 unordered tasks.

Adding Task
Adding Task
Adding Task
Adding Task

with Priority
with Priority
with Priority
with Priority
Adding Task with Priority
Adding Task

Adding Task

with Priority

= OO N O N w o
o O O N O O -
= OO N O N w o

with Priority

Size of Queue before execution is correct (Content 7 and Type is <class 'int'>).

Result (Size of Queue before execution): 7 (<class 'int'>)

Expectation (Size of Queue before execution): result = 7 (<class 'int'>)

Info Executing Queue, till Queue is empty..

Starting Queue execution (run)

Queue is empty.

Size of Queue after execution is correct (Content 0 and Type is <class 'int’>).

Result (Size of Queue after execution): 0 (<class 'int'>)

Expectation (Size of Queue after execution): result = 0 (<class 'int'>)

Queue execution (identified by a submitted sequence number): Values and number of submitted values
is correct. See detailed log for more information.

Result (Queue execution (identified by a submitted sequence number)): [1, 2, 3, 5.1, 5.2, 6,
— 7 1 (Kclass 'list'>)

Expectation (Queue execution (identified by a submitted sequence number)): result = [1, 2, 3,
-~ 5.1, 5.2, 6, 7] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)
Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).
Result (Submitted value number 2): 2 (<class 'int'>)

Expectation (Submitted value number 2): result = 2 (<class 'int'>)
Submitted value number 2 is correct (Content 2 and Type is <class 'int'>).
Result (Submitted value number 3): 3 (<class 'int'>)

Expectation (Submitted value number 3): result = 3 (<class 'int'>)

17 /2]

Unittest for task

Submitted value number 3 is correct (Content 3 and Type is <class 'int'>).
Result (Submitted value number 4): 5.1 (<class 'float'>)

Expectation (Submitted value number 4): result = 5.1 (<class 'float'>)
Submitted value number 4 is correct (Content 5.1 and Type is <class 'float'>).
Result (Submitted value number 5): 5.2 (<class 'float'>)

Expectation (Submitted value number 5): result = 5.2 (<class 'float'>)
Submitted value number 5 is correct (Content 5.2 and Type is <class 'float'>).
Result (Submitted value number 6): 6 (<class 'int'>)

Expectation (Submitted value number 6): result = 6 (<class 'int'>)

Submitted value number 6 is correct (Content 6 and Type is <class 'int'>).
Result (Submitted value number 7): 7 (<class 'int'>)

Expectation (Submitted value number 7): result = 7 (<class 'int'>)

Submitted value number 7 is correct (Content 7 and Type is <class 'int'>).

Info Setting expire flag and enqueued again 2 tasks.

Expire executed
Adding Task 6 with Priority 6
Adding Task 1 with Priority 1

Size of Queue before restarting queue is correct (Content 2 and Type is <class 'int'>).

Result (Size of Queue before restarting queue): 2 (<class 'int'>)

Expectation (Size of Queue before restarting queue): result = 2 (<class 'int'>)

Info Executing Queue, till Queue is empty..

Starting Queue execution (run)

Queue joined and stopped.

Queue execution (rerun; identified by a submitted sequence number): Values and number of submitted

values is correct. See detailed log for more information.

Result (Queue execution (rerun; identified by a submitted sequence number)): [1, 6] (<class
<~ 'list'>)

Expectation (Queue execution (rerun; identified by a submitted sequence number)): result = [
— 1, 6] (<class 'list'>)

Result (Submitted value number 1): 1 (<class 'int'>)

Expectation (Submitted value number 1): result = 1 (<class 'int'>)

Submitted value number 1 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 2): 6 (<class 'int'>)

Expectation (Submitted value number 2): result = 6 (<class 'int'>)

Submitted value number 2 is correct (Content 6 and Type is <class 'int'>).

18 /32

Unittest for task

A.1.7 pylibs.task.threaded_queue: Test enqueue while queue is running

Testresult
This test was passed with the state:

Size of Queue before execution is correct (Content 0 and Type is <class 'int’>).

Result (Size of Queue before execution): 0 (<class 'int'>)

Expectation (Size of Queue before execution): result = 0 (<class 'int'>)

Info Enqueued 2 tasks.

Starting Queue execution (run)
Adding Task 6 with Priority 6 and waiting for 0.1s (half of the queue task delay time)
Adding Task 3 with Priority 3
Adding Task 2 with Priority 2
Adding Task 1 with Priority 1

Size of Queue after execution is correct (Content 0 and Type is <class 'int’>).

Result (Size of Queue after execution): 0 (<class 'int'>)

Expectation (Size of Queue after execution): result = 0 (<class 'int'>)

Queue execution (identified by a submitted sequence number): Values and number of submitted values
is correct. See detailed log for more information.

Result (Queue execution (identified by a submitted sequence number)): [6, 1, 2, 3] (<class
- 'list'>)

Expectation (Queue execution (identified by a submitted sequence number)): result = [6, 1, 2,
— 3] (<class 'list'>)

Result (Submitted value number 1): 6 (<class 'int'>)

Expectation (Submitted value number 1): result = 6 (<class 'int'>)

Submitted value number 1 is correct (Content 6 and Type is <class 'int'>).

Result (Submitted value number 2): 1 (<class 'int'>)

Expectation (Submitted value number 2): result = 1 (<class 'int'>)

Submitted value number 2 is correct (Content 1 and Type is <class 'int'>).

Result (Submitted value number 3): 2 (<class 'int'>)

Expectation (Submitted value number 3): result = 2 (<class 'int'>)

Submitted value number 3 is correct (Content 2 and Type is <class 'int'>).

Result (Submitted value number 4): 3 (<class 'int'>)

Expectation (Submitted value number 4): result = 3 (<class 'int'>)

Submitted value number 4 is correct (Content 3 and Type is <class 'int'>).

19 /32

Unittest for task

A.1.8 pylibs.task.crontab: Test cronjob

Testresult
This test was passed with the state:

Info Initialising cronjob with minute: [23, 45]; hour: [12, 17]; day: 25; month: any; day_of_week: any.

Return value for minute: 23; hour: 17; day: 25; month: 02, day_of _week: 1 is correct (Content True and
Type is <class 'bool'>).

Result (Return value for minute: 23; hour: 17; day: 25; month: 02, day_of_week: 1): True
— (<class 'bool'>)

Expectation (Return value for minute: 23; hour: 17; day: 25; month: 02, day_of_week: 1):

— result = True (<class 'bool'>)

Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5 is correct (Content True and
Type is <class 'bool'>).

Result (Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5): True
— (<class 'bool'>)

Expectation (Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5):

— result = True (<class 'bool'>)

Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1 is correct (Content False and
Type is <class "bool'>).

Result (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1): False
— (<class 'bool'>)

Expectation (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1):

<« result = False (<class 'bool'>)

Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 3 is correct (Content False and
Type is <class 'bool'>).

Result (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 3): False
— (<class 'bool'>)

Expectation (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 3):

< result = False (<class 'bool'>)

Return value for minute: 45; hour: 14; day: 25; month: 02, day_of_week: 1 is correct (Content False and
Type is <class 'bool'>).

Result (Return value for minute: 45; hour: 14; day: 25; month: 02, day_of_week: 1): False
— (<class 'bool'>)

Expectation (Return value for minute: 45; hour: 14; day: 25; month: 02, day_of_week: 1):

< result = False (<class 'bool'>)

20

Unittest for task

Return value for minute: 23; hour: 17; day: 24; month: 02, day_of_week: 1 is correct (Content False and
Type is <class 'bool'>).

Result (Return value for minute: 23; hour: 17; day: 24; month: 02, day_of_week: 1): False
<« (<class 'bool'>)
Expectation (Return value for minute: 23; hour: 17; day: 24; month: 02, day_of_week: 1):

— result = False (<class 'bool'>)

Info Storing reminder for execution (minute: 23, hour: 17, day: 25, month: 2, day_of_week: 1).

Return value for minute: 23; hour: 17; day: 25; month: 02, day_of_week: 1 is correct (Content False and
Type is <class 'bool">).

Result (Return value for minute: 23; hour: 17; day: 25; month: 02, day_of_week: 1): False
— (<class 'bool'>)

Expectation (Return value for minute: 23; hour: 17; day: 25; month: 02, day_of_week: 1):
< result = False (<class 'bool'>)

Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5 is correct (Content True and
Type is <class 'bool'>).

Result (Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5): True
<« (<class 'bool'>)
Expectation (Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5):

— result = True (<class 'bool'>)

Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1 is correct (Content False and
Type is <class 'bool'>).

Result (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1): False
< (<class 'bool'>)
Expectation (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1):

<« result = False (<class 'bool'>)

Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 3 is correct (Content False and
Type is <class 'bool">).

Result (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 3): False
< (<class 'bool'>)
Expectation (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 3):

< result = False (<class 'bool'>)

Return value for minute: 45; hour: 14; day: 25; month: 02, day_of_week: 1 is correct (Content False and
Type is <class 'bool'>).

Result (Return value for minute: 45; hour: 14; day: 25; month: 02, day_of_week: 1): False
— (<class 'bool'>)

21/ 32

Unittest for task

Expectation (Return value for minute: 45; hour: 14; day: 25; month: 02, day_of_week: 1):

— result = False (<class 'bool'>)

Return value for minute: 23; hour: 17; day: 24; month: 02, day_of_week: 1 is correct (Content False and
Type is <class 'bool'>).

Result (Return value for minute: 23; hour: 17; day: 24; month: 02, day_of_week: 1): False
— (<class 'bool'>)
Expectation (Return value for minute: 23; hour: 17; day: 24; month: 02, day_of_week: 1):

< result = False (<class 'bool'>)

Info Resetting trigger condition with minute: 22; hour: any; day: [12, 17, 25], month: 2.

Return value for minute: 23; hour: 17; day: 25; month: 02, day_of_week: 1 is correct (Content False and

Type is <class 'bool'>).

Result (Return value for minute: 23; hour: 17; day: 25; month: 02, day_of_week: 1): False
« (<class 'bool'>)

Expectation (Return value for minute: 23; hour: 17; day: 25; month: 02, day_of_week: 1):
< result = False (<class 'bool'>)

Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5 is correct (Content False and
Type is <class 'bool'>).

Result (Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5): False
— (<class 'bool'>)
Expectation (Return value for minute: 45; hour: 12; day: 25; month: 03, day_of_week: 5):

— result = False (<class 'bool'>)

Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1 is correct (Content True and
Type is <class 'bool'>).

Result (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1): True
— (<class 'bool'>)
Expectation (Return value for minute: 22; hour: 17; day: 25; month: 02, day_of_week: 1):

< result = True (<class 'bool'>)

Return value for minute: 22; hour: 17; day: 25; month: 05, day_of_week: 3 is correct (Content False and
Type is <class 'bool">).

Result (Return value for minute: 22; hour: 17; day: 25; month: 05, day_of_week: 3): False
— (<class 'bool'>)
Expectation (Return value for minute: 22; hour: 17; day: 25; month: 05, day_of_week: 3):

— result = False (<class 'bool'>)

Return value for minute: 45; hour: 14; day: 25; month: 02, day_of_week: 1 is correct (Content False and

Type is <class 'bool'>).

22 /32

Unittest for task

Result (Return value for minute: 45; hour: 14; day: 25; month: 02, day_of_week: 1): False

— (<class 'bool'>)

Expectation (Return value for minute: 45; hour: 14; day: 25; month: 02, day_of_week: 1):

— result = False (<class 'bool'>)

Return value for minute: 23; hour: 17; day: 24; month: 02, day_of_week: 1 is correct (Content False and
Type is <class 'bool'>).

Result (Return value for minute: 23; hour: 17; day: 24; month: 02, day_of_week: 1): False

— (<class 'bool'>)

Expectation (Return value for minute: 23; hour: 17; day: 24; month: 02, day_of_week: 1):

— result = False (<class 'bool'>)

Info Resetting trigger condition (again).

1st run - execution not needed is correct (Content False and Type is <class 'bool’>).

Result (1st run - execution not needed): False (<class 'bool'>)

Expectation (1st run - execution not needed): result = False (<class 'bool'>)

2nd run - execution not needed is correct (Content False and Type is <class 'bool">).

Result (2nd run - execution not needed): False (<class 'bool'>)

Expectation (2nd run - execution not needed): result = False (<class 'bool'>)

3rd run - execution needed is correct (Content True and Type is <class 'bool'>).

Result (3rd run - execution needed): True (<class 'bool'>)

Expectation (3rd run - execution needed): result = True (<class 'bool'>)

4th run - execution needed is correct (Content True and Type is <class 'bool'>).

Result (4th run - execution needed): True (<class 'bool'>)

Expectation (4th run - execution needed): result = True (<class 'bool'>)

5th run - execution not needed is correct (Content False and Type is <class 'bool’>).

Result (5th run - execution not needed): False (<class 'bool'>)

Expectation (5th run - execution not needed): result = False (<class 'bool'>)

6th run - execution not needed is correct (Content False and Type is <class 'bool'>).

Result (6th run - execution not needed): False (<class 'bool'>)

Expectation (6th run - execution not needed): result = False (<class 'bool'>)

23 /32

1

3

4

Unittest for task

A.1.9 pylibs.task.crontab: Test crontab

Testresult
This test was passed with the state:

Info Creating Crontab with callback execution in 4+1 and +3 minutes.

Number of submitted values is correct (Content 2 and Type is <class 'int'>).

Crontab accuracy is 30s

Crontab execution number 1 at 1755284642s, requested for 1755284640s
Crontab execution number 2 at 1755284762s, requested for 1755284760s
Result (Timing of crontasks): [1755284642, 1755284762] (<class 'list'>)
Result (Number of submitted values): 2 (<class 'int'>)

Expectation (Number of submitted values): result = 2 (<class 'int'>)

Timing of crontasks: Valueaccuracy and number of submitted values is correct. See detailed log for more
information.

Result (Submitted value number 1): 1755284642 (<class 'int'>)
Expectation (Submitted value number 1): 1755284640 <= result <= 1755284671
Submitted value number 1 is correct (Content 1755284642 in [1755284640 ... 1755284671] and

— Type is <class 'int'>).
Result (Submitted value number 2): 1755284762 (<class 'int'>)
Expectation (Submitted value number 2): 1755284760 <= result <= 1755284791

Submitted value number 2 is correct (Content 1755284762 in [1755284760 ... 1755284791] and
— Type is <class 'int'>).

B Test-Coverage

B.1 task

The line coverage for task was 98.9%
The branch coverage for task was 98.0%

B.1.1 task.__init__.py

The line coverage for task.__init__.py was 98.9%
The branch coverage for task.__init__.py was 98.0%

#!/usr/bin/env python
—*x— coding: UTF—8 —x—

5 task (Task Module)

24/

15

16

17

18

23

24

25

26

27

38

39

40

41

42

4

44

45

46

47

48

49

63

64

65

Unittest for task

% Author :*
* Dirk Alders <sudo—dirk@mount—mockery.de>
*x Description :xx%
This Module supports helpfull classes for queues, tasks,
**% Submodules %
:class: task.crontab’
:class: task.delayed®

:class: task.periodic’
:class: task.queue’

* K X X ¥

iclass: task.threaded queue’
#xUnittest ixx
See also the :download: unittest <task/ testresults /unittest.pdf>" documentation.

*xModule Documentation :xx

__DEPENDENCIES = []

import logging

import threading

import time

from queue import PriorityQueue
from queue import Empty

try:
from config import APP_NAME as ROOT_ LOGGER NAME
except ImportError:
ROOT LOGGER NAME = 'root'
logger = logging .getLogger (ROOT_LOGGER NAME) . getChild (__name_)

~ DESCRIPTION = """The Module {\\tt %s} is designed to help with task issues like periodic

tasks, delayed tasks, queues, threaded queues and crontabs.
For more Information read the documentation.""" % name .replace(' ', "\\ ')
"""The Module Description"""

__INTERPRETER = (3,)

""" The Tested Interpreter—Versions"""

class queue(object):
nmnu
Class to execute queued callbacks.

:param bool expire: The default value for expire. See also :py:func: expire’

x% Example :x %

literalinclude :: task/ examples /tqueue.py
Will result to the following output:
literalinclude :: task/ examples /tqueue.log

25 /B9

86

87

88

89

90

91

96

97

98

99

100

102

103

104

106

108

109

110

119

120

Unittest for task

class job(object):

def _ init (self, priority , callback, *args, *xkwargs):
self . time = time.time ()
self.priority = priority
self . callback = callback
self.args = args
self.kwargs = kwargs

def run(self, queue):
self.callback(queue, xself.args, *%self.kwargs)

def It (self, other):
if self.priority != other.priority:
return self.priority < other.priority
else:
return self.time < other.time

def _ init_ (self, expire=True):
self. expire = expire
self. stop = False

self.queue = PriorityQueue ()

def clean queue(self):
mnn

This Methods removes all jobs from the queue.

note :: Be aware that already running jobs will not be terminated.
mnn
while not self.queue.empty():
try:
self.queue.get(False)
except Empty: # This block is hard to reach for a testcase, but is

continue # needed, if the thread runs dry while cleaning the queue.

self.queue.task done()

def enqueue(self, priority , callback, xargs, xxkwargs):
mon

This enqueues a given callback.

:param number priority: The priority indication number of this task. The lowest value

will be queued first.
:param callback callback: Callback to be executed
:param args args: Arguments to be given to callback
:param kwargs kwargs: Keword Arguments to be given to callback

note :: Callback will get this instance as first argument, followed by :py:data:’

und :py:data:’ kwargs .

self.queue.put(self.job(priority , callback, xargs, xxkwargs))

def qsize(self):
return self.queue.qsize ()

def run(self):

This starts the execution of the queued callbacks.
mwmnn
self. stop = False
while not self. stop:
try:
self.queue.get(timeout=0.1).run(self)
except Empty:

args’

26 /2]

133

134

135

136

137

139

140

141

142

144

145

146

147

148

149

159

160

161

162

163

164

166

167

168

169

170

171

Unittest for task

if self. expire:
break
if type(self) is threaded queue:
self.thread = None

def expire(self):

This sets the expire flag. That means that the process will stop after queue gets empty.

self. expire = True

def stop(self):

This sets the stop flag. That means that the process will stop after finishing the active
task .

nmon

self. stop = True

class threaded queue(queue):
"""Class to execute queued callbacks in a background thread (See also parent :py:class:

‘).
:param bool expire: The default value for expire. See also :py:func:’ queue.expire’

*x Example :x %

literalinclude :: task/ examples /threaded queue.py
Will result to the following output:

literalinclude :: task/ examples /threaded queue.log
nnn
def _ init_ (self, expire=False):

queue. init__ (self, expire=expire)

self .thread = None

def run(self):
if self.thread is None:

self.thread = threading.Thread(target=self. start, args=(), daemon=True)
self.thread .daemon = True # Daemonize thread
self . thread.start () # Start the execution

def join(self):

This blocks till the queue is empty.

note:: If the queue does not run dry, join will block till the end of the days.

self.expire ()

if self.thread is not None:
self . thread.join ()

def stop(self):
queue .stop(self)
self . join ()

def _start(self):
queue.run(self)

class periodic(object):

‘queue

27/

187

188

189

190

191

193

194

195

196

197

198

199

200

201

Unittest for task

Class to execute a callback cyclicly.

:param float cycle time: Cycle time in seconds — callback will be executed every scycle time
*x seconds

:param callback callback: Callback to be executed

:param args args: Arguments to be given to the callback

:param kwargs kwargs: Keword Arguments to be given to callback

note:: The Callback will get this instance as first argument, followed by :py:data: args’
und :py:data:’ kwargs .

xx Example ;%

literalinclude :: task/ examples /periodic.py
Will result to the following output:

literalinclude :: task/ examples /periodic.log
nnu
def _ _init_ _(self, cycle_time, callback, =xargs, *xkwargs):

self. lock = threading.Lock()

self. timer = None

self.callback = callback

self.cycle time = cycle time

self.args = args

self.kwargs = kwargs

self. stopped = True
self. last_tm = None
self.dt = None

def join(self):

This blocks till the cyclic task is terminated.
note:: Using join means that somewhere has to be a condition calling :py:func: stop’
to terminate. Otherwise :func: task.join will never return.

while not self. stopped:
time.sleep (.1)

def run(self):

This starts the cyclic execution of the given callback.
monn
if self. stopped:

self. set timer(force now=True)

def stop(self):

This stops the execution of any further task.
o
self. lock.acquire()
self. stopped = True
if self. timer is not None:
self. timer.cancel()
self. lock.release ()

def set timer(self , force now=False):

28 /B9

264

265

266

267

286

287

288

289

290

Unittest for task

This sets the timer for the execution of the next task.
monn
self. lock.acquire()
self. stopped = False
if force now:
self. timer = threading.Timer(0, self. start)
else:
self. timer = threading . Timer(self.cycle time, self. start)
self. timer.daemon = True
self. timer.start ()
self. lock.release ()

def start(self):
tm = time.time()
if self. last_tm is not None:
self.dt = tm — self. last tm
self. set timer(force now=False)
self . callback(self, xself . args, xxself. kwargs)
self. last tm = tm

class delayed(periodic):

"""Class to execute a callback a given time in the future. See also parent :py:class:’
periodic °

:param float time: Delay time for execution of the given callback
:param callback callback: Callback to be executed

:param args args: Arguments to be given to callback

:param kwargs kwargs: Keword Arguments to be given to callback

*x Example 1% %
literalinclude :: task/ examples /delayed.py
Will result to the following output:

literalinclude :: task/ examples /delayed.log
nnu

def run(self):

This starts the timer for the delayed execution.
mnn

self. set timer(force now=False)

def start(self):
self . callback (xself.args, xxself.kwargs)
self.stop ()

class crontab(periodic):

""WClass to execute a callback at the specified time conditions. See also parent :py:class:’
periodic °

:param accuracy: Repeat time in seconds for background task checking event triggering. This
time is the maximum delay between specified time condition and the execution.
:type accuracy: float

*x Example :x %

literalinclude :: task/ examples /crontab.py

29 /B9

303

304

305

306

307

308

309

310

311

315

316

317

318

319

320

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

344

345

346

347

348

349

350

Unittest for task

Will result to the following output:
literalinclude :: task/ examples /crontab.log

nnn

ANY = 'x'!

""WConstant for matching every condition."""

class cronjob(object):
"""Class to handle cronjob parameters and cronjob changes.

:param minute: Minute for execution. Either 0...59, [0...59, 0...59, ...] or :py:const:’
crontab .ANY" for every Minute.

:type minute: int, list , str

:param hour: Hour for execution. Either 0...23, [0...23, 0...23, ...] or :py:const:’
crontab .ANY" for every Hour.

:type hour: int, list , str

:param day of month: Day of Month for execution. Either 0...31, [0...31, 0...31, ...] or
tpy:const: crontab.ANY" for every Day of Month.

itype day of month: int, list, str

:param month: Month for execution. Either 0...12, [0...12, 0...12, ...] or :py:const:’
crontab .ANY" for every Month.

:type month: int, list, str

:param day of week: Day of Week for execution. Either 0...6, [0...6, 0...6, ...] or :py:
const: crontab .ANY' for every Day of Week.

itype day of week: int, list , str

:param callback: The callback to be executed. The instance of :py:class: cronjob™ will be

given as the first , args and kwargs as the following parameters.
:type callback: func

note:: This class should not be used stand alone. An instance will be created by
adding a cronjob by using :py:func: crontab.add cronjob() .

class all_match(set):

"""Universal set — match everything"""
def _ contains__ (self , item):
(item)

return True

def init (self, minute, hour, day of month, month, day of week, callback, xargs, =*x
kwargs) :
self.set trigger conditions(minute or crontab .ANY, hour or crontab.ANY,
day of month or crontab.ANY, month or crontab.ANY,
day of week or crontab .ANY)

self.callback = callback

self.args = args

self.kwargs = kwargs

self. last cron_ check time = None
self. last_execution = None

def set trigger conditions(self, minute=None, hour=None, day of month=None, month=None,
day_of week=None):
""" This Method changes the execution parameters.

tparam minute: Minute for execution. Either 0...59, [0...59, 0...59, ...] or :py:
const: crontab .ANY' for every Minute.

:type minute: int, list , str

:param hour: Hour for execution. Either 0...23, [0...23, 0...23, ...] or :py:const:’

crontab .ANY" for every Hour.
stype hour: int, list , str

30/ 37

Unittest for task

352 :param day of month: Day of Month for execution. Either 0...31, [0...31, 0...31, ...]
or :py:const: crontab.ANY' for every Day of Month.

353 itype day of month: int, list, str

354 :param month: Month for execution. Either 0...12, [0...12, 0...12, ...] or :py:const
“crontab .ANY" for every Month.

355 :type month: int, list , str

356 :param day of week: Day of Week for execution. Either 0...6, [0...6, 0...6, ...] or
py:const: crontab .ANY' for every Day of Week.

357 itype day of week: int, list, str

358 nun

359 if minute is not None:

360 self.minute = self. conv to set (minute)

361 if hour is not None:

362 self.hour = self. conv to set (hour)

363 if day of month is not None:

364 self . day_of month = self._ _conv_to_set__ (day_of_month)

365 if month is not None:

366 self.month = self. conv to set (month)

367 if day of week is not None:

368 self . day of week = self. conv_to set (day_ of week)

369

370 def conv _to set (self, obj):

371 if obj is crontab.ANY:

372 return self . all_match ()

373 elif isinstance(obj, (int)):

374 return set ([obj])

375 else:

376 return set(obj)

377

378 def _ execution needed for (self, minute, hour, day of month, month, day of week):

379 if self. last_execution__ I= [minute, hour, day of month, month, day_ of week]:

380 if minute in self.minute and hour in self.hour and day of month in self.
day of month and month in self.month and day of week in self.day of week:

381 return True

382 return False

383

384 def store execution reminder _ (self , minute, hour, day of month, month, day of week):

385 self. _last_execution__ = [minute, hour, day_of_month, month, day_of_week]

386

387 def cron_execution(self, tm):

388 """This Methods executes the Cron—Callback, if a execution is needed for the given

time (depending on the parameters on initialisation)

389

300 cparam tm: (Current) Time Value to be checked. The time needs to be given in seconds
since 1970 (e.g. generated by int(time.time())).

301 itype tm: int

392 e

303 if self. last cron_check time_ is None:

304 self. last cron_ check time =1tm — 1

395 #

396 for t in range(self. last cron check time 4+ 1, tm + 1):

307 It = time.localtime(t)

308 if self. execution needed for_ (It [4], 1t[3], It[2], It[1], It[6]):

399 self.callback(self, *xself.args, xxself.kwargs)

400 self. store execution reminder (It [4], 1t [3], It[2], It[1], It[6])

401 break

402 self.__last_cron_check_time__ = tm

403

a04 def init (self, accuracy=30):

405 periodic. init_ (self, accuracy, self. periodic_)

406 self. crontab_ = []

407

31/[B2

408

409

410

418

419

420

432

433

Unittest for task

def _ periodic_ (self, rt):

(re)
tm = int(time.time())
for cronjob in self. crontab

cronjob .cron execution (tm)

def add cronjob(self , minute, hour, day of month, month, day of week, callback,6 =xargs,6 =*x

kwargs) :

""" This Method adds a cronjob to be executed.

:param minute: Minute for execution. Either 0...59, [0...59, 0...59, ...] or :py:const:’
crontab .ANY" for every Minute.

:type minute: int, list , str

:param hour: Hour for execution. Either 0...23, [0...23, 0...23, ...] or :py:const:’
crontab .ANY" for every Hour.

ttype hour: int, list , str

:param day of month: Day of Month for execution. Either 0...31, [0...31, 0...31, ...] or
:py:const: crontab.ANY" for every Day of Month.

‘type day of month: int, list, str

:param month: Month for execution. Either 0...12, [0...12, 0...12, ...] or :py:const:’
crontab .ANY" for every Month.

:type month: int, list , str

:param day of week: Day of Week for execution. Either 0...6, [0...6, 0...6, ...] or :py:
const: crontab .ANY' for every Day of Week.

ttype day of week: int, list, str

:param callback: The callback to be executed. The instance of :py:class: cronjob”™ will be
given as the first , args and kwargs as the following parameters.

ttype callback: func

note:: The "~ “callback ™" will be executed with it's instance of :py:class: cronjob ™ as
the first parameter.
The given Arguments (:data: args') and keyword Arguments (:data: kwargs') will be

stored in that object.

mon

self. crontab .append(self.cronjob(minute, hour, day of month, month, day of week,

callback , xargs, xxkwargs))

32 /37

	Test Information
	Test Candidate Information
	Unittest Information
	Test System Information

	Statistic
	Test-Statistic for testrun with python 3.13.5 (final)
	Coverage Statistic

	Testcases with no corresponding Requirement
	Summary for testrun with python 3.13.5 (final)
	 pylibs.task.crontab: Test cronjob
	 pylibs.task.crontab: Test crontab
	 pylibs.task.delayed: Test parallel processing and timing for a delayed execution
	 pylibs.task.periodic: Test periodic execution
	 pylibs.task.queue: Test clean_queue method
	 pylibs.task.queue: Test qsize and queue execution order by priority
	 pylibs.task.queue: Test stop method
	 pylibs.task.threaded_queue: Test enqueue while queue is running
	 pylibs.task.threaded_queue: Test qsize and queue execution order by priority

	Trace for testrun with python 3.13.5 (final)
	Tests with status Info (9)
	 pylibs.task.delayed: Test parallel processing and timing for a delayed execution
	 pylibs.task.periodic: Test periodic execution
	 pylibs.task.queue: Test qsize and queue execution order by priority
	 pylibs.task.queue: Test stop method
	 pylibs.task.queue: Test clean_queue method
	 pylibs.task.threaded_queue: Test qsize and queue execution order by priority
	 pylibs.task.threaded_queue: Test enqueue while queue is running
	 pylibs.task.crontab: Test cronjob
	 pylibs.task.crontab: Test crontab

	Test-Coverage
	 task
	 task.__init__.py

